
ESD-TR-71-363
£SD ACC
TRl CaU No

CopvNo

NUST
MTR-2203

AIDS USERS' MANUAL

C.A. Marcus ESD RECORD COPY
RETURN TO

aaaiDBc*TECHNICAL.INFORMATION DIVISION

CTRUi Building 12X0

AUGUST 1971

Prepared for

DEPUTY FOR COMMAND AND MANAGEMENT SYSTEMS
ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND

UNITED STATES AIR FORCE
L. G. Hanscom Field, Bedford. Masuftchusatts

Approved for public release;
distribution unlimited

Project 4060

Prepared by

THE MITRE CORPORATION
Bedford, Massachusetts

Contract F19(628)-7l-C-0002

ADA^Y'S'

When U.S. Government drawings, specifications,

or other data are used for any purpose other than

a definitely related government procurement

operation, the government thereby incurs no re-

sponsibility nor any obligation whatsoever; and

the fact that the government may have formu-

lated, furnished, or in any way supplied the said

drawings, specifications, or other data is not to be

regarded by implication or otherwise, as in any

manner licensing the holder or any other person

or corporation, or conveying any rights or per-

mission to manufacture, use, or sell any patented

invention that may in any way be related thereto.

Do not return this copy. Retain or dastrov i

ESD-TR-71-383 MTR-2203

AIDS USERS' MANUAL

C.A. Marcus

AUGUST 1971

Proparod for

DEPUTY FOR COMMAND AND MANAGEMENT SYSTEMS
ELECTRONIC SYSTEMS DIVISION
ATR FORCE SYSTEMS COMMAND

UNITED STATES AIR FORCE
L. G. Hanscom Field, Bedford, Massachusetts

Approved for public release;
distribution unlimited

Project 4060

Prepared by

THE MITRE CORPORATION
Bedford, Massachusetts

Contract F19(628)-71-C-0002

REVIEW AND APPROVAL

This technical report has been reviewed and approved.

tmmmm *^*a&\

EDMUND P. GAINES, JR. , Colonel, USAF
Director, Systems Design & Development
Deputy for Command & Management Systems

FOREWORD

This document is a users' manual for a data management system designed
for answering requests for specific information using Honeywell (GE) G-635
computers. This system was developed for the Data Services Center, Hq
USAF, under Development Directive 79, dated 29 September 1970, and AFSC
Program Direction (6917-13-71-28), dated 25 November 1970. The system
development was accomplished by General Electric Co., Space Division
under contract F19(628)-71-C-0181. This document was prepared by The
MITRE Corporation under contract F19(628)-71-C-0002. Technical design
and direction of this project is by Capt Frederick P. Ariail, Technology
Applications Division (MCDT), Directorate of Systems Design and Develop-
ment (MCD).

Developmental testing and evaluation of this system were provided by The
MITRE Corporation and Rome Air Development Center, Information Sciences
Division.

li

ABSTRACT

AIDS is a computer software package designed to provide data
management capabilities to a wide variety of users. It is written
primarily in Common Business Oriented Language (COBOL) and is
designed and implemented on the Honeywell G-635. This system,
originally developed for NASA by General Electric Co., Apollo Sys-
tems Division, was named Manned Space Flight-Data Processing System
(MSF-DPS). Modifications were made to improve the capabilities of
MSF-DPS. These modifications, designed to meet interim requirements
of the Air Force Data Services Center (AF/ACS), provide a responsive,
versatile data management system for users of Honeywell (GE) 600
series computers.

This technical report, designed for users of AIDS, details the
features of this system and provides examples of its use. Detailed
system description (installation, maintenance, internal linkages,
etc.) are not contained in this report. This information is con-
tained in the AIDS Operations Manual (General Electric Co., "AIDS
Version Description Document," July 1971). Organizations using
AIDS may further modify or enhance this system independently of ESD;
therefore, no attempt will be made by ESD to update this Technical
Report if such changes are made.

in

TABLE OF CONTENTS

LIST OF ILLUSTRATIONS
LIST OF TABLES

SECTION I INTRODUCTION 1
AIDS SYSTEM CONCEPTS 1

Definition of Terms 2
Modes of Operation 2

AIDS T.SS SUBSYSTEM 2
System Startup and Termination 3
Query Formulation 3
System Tutorials 3
Error Diagnostics 4

BATCH SUBSYSTEM A
Batch Processing of Queries 4
Dictionary Definition and Maintenance A
Security File Definition and Maintenance 5
Message File Definition and Maintenance 5

SECTION II FILE DICTIONARY DEFINITION 6
INTRODUCTION 6

Logical File Structure 6
Physical File Structure 8

FILE DEFINITION PROCEDURE 10
File Name Card 11
Level Structure Card 17
Field Definition Card 19
Report Field Definition 23
Table Lookup Card 26

FILE MODIFICATION 28
Add Capability 28
Delete Capability 29
Modify Capability 29

DICTIONARY DEFINITION OPERATION 30

SECTION III AIDS TSS SUBSYSTEM 31
INTRODUCTION 31
QUERY LANGUAGE 31
RETRIEVE PHRASE 32

Retrieval Algorithm 32
Search Methods 35
File Name Specification 36
Syntax of Restricted Level Search 36
New-Variable Definition 37

TABLE OF CONTENTS (Concluded)

SECTION III
RETRIEVE PHRASE (Continued)

Basic Criterion
Complex Criteria
Parentheses in Boolean Expressions
Negation
Syntax of Exception Reporting Search
Termination of RETRIEVE Phrase

SORT PHRASE
Sort Specification
Multiple Sorts
Sort Limitations
Termination of SORT Phrase

COMPUTE PHRASE
SUM and COUNT Functions
BREAK Option
Decimal Significance Option
IF Clause Option
COMPUTE Phrase Limitations
Multiple COMPUTE Phrases
Termination of COMPUTE Phrase

PRINT PHRASE
System Default Positioning
User Defined Positioning
Output Devices
Data Output Suppression

Table Lookup
Output Volume Control
Termination of PRINT Phrase

REFORMAT PHRASE
REFORMAT Output Media
Limitations on REFORMAT Output
Record Definition and Identification
Reformatted Field Definition
REFORMAT Operation
Termination of REFORMAT Phrase

38
40
42
43
43
44
44
44
46
46
46
46
48
48
49
49
50
50
50
51
51
51
54
55
57
57
58
58

.58
60
60
61
63
64

SECTION IV ON-LINE USE
USEP STARTUP
QUERY FORMULATION
OPERATIONAL COMMANDS

Operational Query Commands
Operational Subsystem Commands

65
65
65
67
67
70

vi

LIST OF ILLUSTRATIONS

Figure Number Page

II-l Sample File Structures 7
II-2 Sample Hierarchical File Structure 9
II-3 Sample File Definition Card Formats - Page 1 12
II-4 Sample File Definition Card Formats - Page 2 13
II-5 Sample File Definition Card Formats - Page 3 14

III-l RETRIEVE Phrase Syntax 33
III-2 Sample Hierarchical File Structure 34
III-3 SORT Phrase Syntax 45
III-4 COMPUTE Phrase Syntax 47
III-5 PRINT Phrase Syntax 52
III-6 REFORMAT Phrase Syntax 59

IV-1 AIDS Logon Procedure 66
IV-2 Operational Query Commands 68
IV-3 Command Options in EXPERT Modes 71

LIST OF TABLES

Table Number Page

II-l File Name Card 15
II-2 Level Structure Card 18
II-3 Field Definition Card 20
II-4 Report Field Definition Card 24
I1-5 Table Lookup Card 27

vii

1

SECTION I

INTRODUCTION

The AF/ACS Interim Data Management System (AIDS) is a computer
software package designed to provide data management capabilities to
a wide variety of users. It is written primarily in Common Business
Oriented Language (COBOL) and is designed and implemented on the
Honeywell G-635. This paper, in conjunction with the AIDS Operations
Manual, provides the documentation needed to use the AIDS system.

AIDS SYSTEM CONCEPTS

AIDS is a data management system aimed at answering requests for
specific information stored in formatted files. The system provides
support in the following areas:

i. One time non-routine requests.

ii. Specific and selective information requests.

iii. Non-periodic, as well as periodic, reports.

iv. Definition of formats for periodic reports.

v. Surveys of file contents by users.

AIDS is best applied to production of unscheduled reports or
requests for specific or selective information from available data
files. AIDS can satisfy the requirements for ad hoc requests by
eliminating the need for special programming to produce one-time
reports. This implies that the types of requests most appropriate
are those for which the output represents a small percentage of the
total data file. Reports that the user may want to produce on a
routine basis should probably be generated by using special-purpose
COBOL programs.

AIDS accesses data files through a dictionary which describes
the structure of each file to be searched. All data files must be
maintained and generated externally to AIDS, usually by the individual
disciplines requiring the data; i.e., procurement, management, cost
analysis. AIDS can be used to search these files and to produce

reports.

Definition of Terms

The following terms are defined in order to permit brevity in
describing AIDS and to help eliminate confusion about each item:

Data Value is the basic unit of information which is not normally
subdivided. This value will be a name, number, or combination of
both.

Data Field is one or more characters conveying some type of
information and containing a data value. Data fields within a
record are searched to satisfy a requirement. Fields are given
English titles for reference and are listed in the dictionary
file.

Record is a collection of data fields that satisfy a particular
function within an application. The record length is dependent
on the number and size of the data fields in the record.

File is a collection of records, not necessarily all the same
in length or type. File length is dependent on the number of
records in the file. A file may extend over more than one tape
reel.

Dictionary is a collection of information which defines the
structure of a file by describing each record type and each data
field within the file. (The dictionary is used by AIDS to con-
vert external field titles to specific physical locations of data
within the file.)

Modes of Operation

AIDS has two modes of operation on the G-635: a time-sharing
subsystem and a batch subsystem. Requests or queries are formulated
and checked by using the Time-Sharing Subsystem (T3S) of AIDS. This
AIDS subsystem allows a user to formulate queries and have the syntax
checked via a remote terminal. The queries are grouped together by
the system and periodically the batch processing subsystem of AIDS is
run to search the data files associated with the stored queries and
to produce the required reports. This batch processing subsystem is
designed for queries against very large data files, since searching
these files on-line would result in extremely long response times;
i.e., minutes or hours.

AIDS TSS SUBSYSTEM

The TSS subsystem of AIDS provides the capabilities and facilities
for direct query formulation, computer-aided instruction or tutorials
for query formulation, and error diagnostics.

System Startup and Termination

The user accesses the AIDS TSS Subsystem through the G-635 Gen-
eral Timesharing System (GE-TSS). The AIDS TSS Subsystem is defined
as a system under GE-TSS. Upon completion of query formulation, the
user ends the transaction using normal GE-TSS sign-off procedures.
User startup and signoff are outlined in the second subsection of
Section IV.

Query Formulation

Queries are submitted on-line via teletype in an English-like lan-
guage with syntactic validation occurring at the time of entry. All
validated queries are stored on disk. File searching and report produc-
tion are done at a later time by the batch processing subsystem of AIDS.

Available to the user in formulating his queries are facilities
for comprehensive data qualifications, sorting, computations, totaling,
and subtotaling on data fields within the file. Also available are
a reformatting capability for creating a new file subset on tape or
cards and a flexible report formatting capability. Additionally,
queries used to generate reports may be saved on disk and run again
when desired.

System Tutorials

AIDS provides a range of user tutorials for both novice and
experienced users. This capability is divided into two basic modes:
the syntax validation mode which provides a minimum of user instruc-
tion, and the tutorial assistance mode which provides detailed instruc-
tions for query development.

Within the syntax validation mode, each line of user input is
checked for correctness at the time it is entered. The system then
waits for the next line with no intervening instruction. Exceptions
to this are error messages and certain phrase boundaries.

The tutorial assistance mode provides three sub-modes of operation.
For the completely uninitiated user, the system provides a read-only
mode which describes the syntax in detail but does not allow any user
query formulation. For slightly more knowledgeable users, the system
provides a practice mode which allows queries to be formulated but not
run. This mode provides prompting between each line of input which
describes the legal syntax elements which can be used at that point in
the query. Finally, the system allows for use of the prompting mode
for queries which are to be run against data files.

Error Diagnostics

Error diagnostics are available to the user in developing his
queries. During all query formulation, input lines may be terminated
at any word boundary, at which time a partial syntax check is performed
by the system. Error messages describe as completely as possible the
remedial actions necessary. On-line query correction is allowed.

BATCH SUBSYSTEM

Major portions of AIDS operate in a batch mode, such as the
batch processing of queries and the batch processing utility routines.
The utility routines provide functions necessary to build and maintain
the internal file used by AIDS while operating under time-sharing.
These functions include dictionary definition and maintenance, security
file definition and maintenance, and message and tutorial file main-
tenance .

Batch Processing of Queries

Queries accepted by AIDS and stored on disk are run later in a
batch processing mode to retrieve and output data. This batch job is
normally run with other queries since the batch subsystem is capable
of combining up to ten retrievals in a single pass against a file.
The batch nature of the retrieval process makes large file searches
more practical since it can be scheduled for periods of low system
activity.

Dictionary Definition and Maintenance

The user defines the physical structure of his file to the system
in a procedure called Dictionary Definition. Output from the Dictionary
Definition Operation, discussed in Section II, is a dictionary file
which relates each English title for a data field to the data field's
logical and physical position in the file. The user, when naming a
data field in his query, utilizes the dictionary file to validate the
file and data fields being referenced. The dictionary describes the
field layout within a record, allows the various control parameters
established by the user to be properly interpreted, and converts codes
carried by the tape file into understandable words or abbreviations.

Capabilities exist in AIDS to create, to delete, and/or to modify
a dictionary file via card input to the Dictionary Definition Operation.
These capabilities are further discussed in the File Modification
subsection of Section II and the AIDS Operations Manual.

Security File Definition and Maintenance

AIDS provides the capability to build and maintain a security
file for each valid user identification. Each security file contains
the file names and dictionary codes associated with that identification.

The security files are typically maintained by each group or agency
that has a set of files defined to AIDS. The card inputs to define
and maintain each security file are described in the AIDS Operations
Manual.

Message File Definition and Maintenance

The message file maintained by AIDS contains two types of messages:

i. Error messages describing user inputs to AIDS.

ii. Tutorial prompting messages aimed at developing user skills
in query syntax formulation.

AIDS provides the capability to add, to delete, and/or to modify any
or all of the message file statements via card input to the message
file processing routine. The message file is further discussed in
the AIDS Operations Manual.

SECTION II

FILE DICTIONARY DEFINITION

INTRODUCTION

Each record type format in the data file must be defined to the
system. Serial files which consist of fixed-format, fixed-length
records can be defined as AIDS data files. The only requirement is
that each record type (in multiple record type files) have a unique
identifier as one of its data fields. Field titles are assigned to
the data fields which the user expects to query. Length, position,
coding type, and report field heading are specified for each data
field. After the data file definition has been validated by the
dictionary utility routine of AIDS and output in the dictionary file,
all AIDS query and tutorial functions can operate against the data
file.

Logical File Structure

AIDS was designed for use against serially-formatted tape files.
The logical structure of files permitted by AIDS can be explained
with the use of specific examples concerning a sample file containing
personnel and organizational data.

A flat file can be defined to AIDS. A flat file is one which
contains one or more record types which are logically independent.
For instance, consider a sample file which reports each employee in
an organization on a separate record. This file is a single-record
type file as illustrated in Figure II-1A. The data field titles are
also illustrated. Each record is logically independent; the input
order of the records is unimportant to the system.

A flat file may also contain more than one record type, as in
the case of a file which contains both employee and organization
data. Figure II-1B illustrates the two record types which make up
this file as well as the field titles for the data field. Each
personnel and organization record is indicated by the codes 101 and
102 in the first data field of each record, respectively. This
structure is, in effect, two separate files merged into a single tape
file. Again, each record type is logically independent, and the
input order of the records is unimportant.

RECORD FORMAT

iOI NUM NAME

SAMPLE DATA RECORDS

101 32579 LYNN, K.R.

IOI 57060 CARR, P.I.

IOI 15324 CALLEGAN, R,E,

(A) SINGLE RECORD TYPE, SINGLE LEVEL FILE

RECORD FORMAT

101 NUM NAME

102 DIV TYPE TITLE

SAMPLE DATA RECORDS

IOI 32579 LYNN, K.R.

IOI 57060 CARR, P.i:

102 2000 DIV REPRESENTATIVE DIVISION

IOI 15324 CALLEGAN, R.E.

102 2100 DEPT DEVELOPMENT DEPARTMENT

o

I

H

(B) SINGLE LEVEL, MULTI-RECORD TYPE FILE

Figure II-I SAMPLE FILE STRUCTURES

AIDS permits hierarchical-tree or multi-level files of up to
eight levels, where each level or node in the tree represents a par-
ticular record type. For example, in the sample file a logical
structure could be defined which assigns a personnel data record (P)
to each personnel record and an organization data record (OD) to each
organization record. In structure, the sample appears as illustrated
in Figure II-2. More than one P record can exist for each 101 record.
Similarly, more than one OD record can exist for each 102 record.

No explicit linking between records of different types or between
files is allowed. That is, the system itself cannot be made aware of
any relationships between records of different types but relies on
the input order of the records to define the hierarchical order. The
sample hierarchical file in Figure II-2 is acceptable to AIDS where
the 101 and 102 nodes of the tree are first-level records and the P
and OD nodes are second-level records. Any meaningful order of the
file is reflected in the input order of the records, for the 101 and
P records are logically related and the 102 and OD records are, like-
wise, logically related.

Physical File Structure

AIDS was designed to accept files generated in an external
environment. The intent was to accept as many varieties of formats
as possible. The system is intended for files generated in a
tape-oriented batch processing environment; that is, fixed-record
length, serial tape files. Its ability to handle files of
mixed-record types of different lengths is particularly useful. It
is not intended for and cannot accept complex disk files with
indices or hash-code tables.

The file size and other file parameter limitations within AIDS
are as follows:

i. The number of records in a file is aribtrarily large
since files may extend over more than one physical tape
reel. However, the tapes must be recorded in System
Standard Format compatible to GECOS. In other terms,
the tape may be either a 7- or 9- track tape, but it
must be recorded in physical blocks of 320 words
(1920 characters).

ii. Each field in the data tape must be character (BCD)
coded.

m

IT,
I
<

RECORD FORMAT

101 NUM NAME

P ORG JOBTITLE LEVEL SALARY

102 DIV TYPE TITLE

00 REPORTS COMPOSITION

SAMPLE DATA RECORDS

101 32579 LYNN, K.R,

P 2000 5210 EM PL 6000

101 57060 CARR, RI.

P 2000 II10 HEAD 24000
■ /

101 15324 CALLEGAN, R.E.

P 2100 5210 EMPL , 5400

102 2000 DIV REPRESENTATIVE DIVISION

OD 1000 21002300

102 2100 DEPT DEVELOPMENT DEPARTMENT

on 2000 21102120

OD 2000 2130

OD 2000 2190

Figure m-2 SAMPLE HIERARCHICAL FILE STRUCTURE

I

FILE DEFINITION PROCEDURE

iii. Maximum size of a data file record is 1,800 characters,
with a limitation of 4,968 characters on the sum of all
those record lengths at any given file level. As men-
tioned earlier, there can be a maximum of eight levels
in any file. In addition, the system allows for a maxi-
mum of 43 record types per file and 999 data fields per
level, whose field titles must be unique within the file.

AIDS requires that data files be stored on tape in a serial for-
mat. In the case of a hierarchical file, the order of the records on
the data tape should be by complete tree-branch top-to-bottom, the
order of individual branches being arbitrary. A sensible order for
the sample file would be that in Figure II-2. The system requires
that for each record type within a file a unique code of one-to-three
characters appear in the same position in each record of that type.
For instance, the first data field of each record type in Figure II-2
contains a unique code.

The system does not check the input order of records. Conse-
quently, care must be exercised to insure that the file is not in
garbled order; otherwise, output will in general be meaningless.
Since the files are in serial order on tape, no inversion or random-
izing is possible. This implies that access to specific single
records whose identification is known in advance requires a search
of the entire file.

The structure and format of a given file is made known to AIDS
via a dictionary. The dictionary describes the data only as it
appears within the data file at retrieval time rather than as the
data appears for input to a file-generation program.

There are three major sections within an AIDS dictionary: the
File Definition Section, the Level Structure Section, and the Field
Definition Section. The File Definition Section, consisting of one
card per file, defines the file name of the file, the maximum size
in words of the largest record in the file, and the number of levels
in the file.

The Level Structure Section, consisting of one card per record
type, defines the level of the record type involved, the record size,
and the position within the record of the record-type code.

10

The Field Definition Section, consisting of two cards of 29
fields per data field, defines the name of the data field, the posi-
tion of the data field within the record, its type, and its name for
the purpose of report headings.

An optional capability to define coded field lookup tables is
provided in a Table Definition Section. The Table Definition Section,
consisting of one card per table lookup value, defines a table lookup
reference code (or table name), an argument (or data value as it
appears in the file), and a function (or value to be used on output).
A corresponding table lookup code is added to the data field defini-
tion cards if this option is elected.

Coded field lookup tables provide a means of representing the
value of a field on output listings in a format different from that
used on the data tape. For example, for the field named "SKILL",
the values stored in the data file might be: 01, 02, ..., 09, whereas
the output values would be: PROGRAMMER, SYS/ANALYST, ..., DEPT. HEAD.

AIDS dictionaries are converted from their external card format
to the internal format using the dictionary maintenance program.
This batch program generates a new dictionary on tape, adds or deletes
fields from an existing dictionary on tape, provides listings of a
dictionary for users, or transfers dictionaries from tape to disk for
use in processing queries. Dictionaries are normally maintained on
tape and reloaded to disk whenever they have been changed externally
on tape or accidentally lost on disk.

The following section explains the dictionary card input required
for the two-level PERSONNEL file. Formats for the file name, level,
and data field card input are provided in each section as well as in
Appendix II. Figures II-3, II-4, and II-5 show the sample coding
sheets for the PERSONNEL file.

File Name Card

The file name card provides the identification of a particular
file to AIDS. Only one card per file is required. The first line
of the sample coding sheet for the PERSONNEL file in Figure II-3 pro-
vides an example of a file name card. The file name card contains
eleven fields as outlined in Table II-l and is described as follows:

11

12

JOB PERSONNEL/AIDS

BY CA MAKCUS ;■-■■ fe/i/71

GENERAL PURPOSE CARD PUNCHING FORM

CHECK ONE
LETTER O NUMBER 0
SLASHED ____ SLASHED

PUNCHIHG IHSTRUCTIOHS

»RITTEN AS:

PUNCH to. -

f IELO IDCHTIMCATIQw

ti

j-U [PiS.JtLkLliOjL4.iti.Li ._i__L._i__4_
i_i_u__k____J ITIM| i iliKiIlkiLigj^L_UJ

i__^|t,Lll|gli.T,i,_;_i__l_„U_.S_. i .1 | :
l_______ii.__±._.til|. i lAJltliiiitS
P:S:NtkJUg1.!,1.ftJlJ.[|,_J1f,fc1#nifttAiaiY| iSitdL.-LiJ.LiL

L-.^lti-.llp.blx'ili ..._i.P-_il. i
l____I____l__-,i'?,-iri .Ui_J_.__T._4-._i_ x
P,S,W,L,iiO,2,o,i,I| , .CiALÄlB,^
PiSi -._xlig-_i-i-_fl ,C_..H_1>I ,7,V,P._.|
 i i—i i L__, ii i i. i i i 1.. , ___i i 4-

ii ,i i\ «i ffti ;i iTinnTinnrffii »lai iiol ■ uurrhu 11 iii» lofrrmnrrfTTmii
51-60 61-70

P.S.W.L.IIO.I,4,1,I| , ,S,K,1IL,L.4, t 4

p|»iW.Viiiffi.aitiiiii 1 ,PL_L_LI,_I-I<-_I _
£__J1U_J ____ l.ili.H.iftil.i.V. H3.L». «1
Pi______J .,1,1,!ij| 1 .Ii_itlt__L 1 L_1_.
___J_iL,l O 2 z 2 [T X P E ,

PiS.HxL,! 0,1,3,1,11
JLftilifcillCbtiJiiiIi
P.S.N.L,! 0,2 4 / 1

;P S N L I Q4Ii41l.il
IP.S41LL,I o 2. _ 1 I
P.s I Li e,li_-i2_Il ,eu,.,&iE,T.

,P _ » L I O 2 fc I [U P.PI3L 1 .

P,S,ll._.llO,_.*,_.l: ,M.PIPIAITIEI3

P.-il-L.-lQi3.Jil.il
P S I L,|,0,3,5,1,1,

 1 1 1 L_i_L 1..1 l__!

, iC.A.RiP^, 1 , J

,CA,R,Dl .T.Y.P.-1

l 4.1 . J .-1____._4_-
, .,C,0,l_P:i_,_,I,T4l..0._..
i_,0.MiPl0,S_IiT, _;_____ L

RlE.P,*,^..., j
,R,E.P.|.|R,T,_, .Tl_.
1 ,-.P,->.4, ,,.,).

L£l__Ji____l_! I 1- 11 I Li I
P lSlHlt.llflj.lLliXl.il
l___x_i_jllfiil__ ,1,1 :
!P.S, ll.Ll 0,1 _ 2 I
[£____,L.io liiiixLL
£._i_il.llOlaj_.,xai.___PiP._uT-___..
1_4_____I_-.I_IQI.IIL _i_ .__#____. ____

■ __I-I_IOI_.-I1L_X---.I_L_--4L.--I. i __4-__L
P_.,H,_,ii_._.i,.iI| , ,C,-,MiP,l, _ 4 J._.

[__-_l-i_ .HO.-.l.liIl .C.iiMiPlli-j- ■ ■ I 1 1 -L-J-L

piainiiaiigiSi iiiifi 1 iC itftiiPi?. 1 1 1 . 1 1 1 1.
p.siHii-iiiPijiiiiiH iCigiWiPiAi.

y 1 a r 91 0! i| ?? j'<' s 16TTTTF rntTTf j 3 -«HI .NTT

1 iTtliXikiEi-j.-i_u-L.-i_i--i._L 1 Li
J.IiTlLlE, 1 .1 1 1.x 1- a. 1 J_J 1
1 E,N,plL.0:Y E E S

■ CiMiPil_i#iYiE 1 f-S.1. _____.-

■BjO.Pifr.ijT. L.4~_-I 1 I 1 -i

.0,014.1.0044 110,4.210,1, ■ , I ■ _
1 x L._ _._. . L . , . iftÜlJ 0 0: Oil. 0,0
Q_Ol_-_-_Q___ .■____> _1 .____■ 1|0 ■ I 1-i 1- L _ 1

.Oil,! o o,o.lz.,olo
o o.i «. o o 4 8 1 a o _ o 1 , , , 1 . ,

1 _i_ 1 f.L«_i I >0,O,l|4 .O:
.0.Q.7 3 O O 8:0 1.0 0.240,1 .1. , 1 , ,

■ 1 LLJOJ, I.Q1O1«!' ,Ot

0 0,0 » 00 OLM 0, i,_<o 1 , , 1 1 , ,
. t ,<>L__i • .P.O,0|.4JO:

. I . 1...4 ' (I I •
o 0.0 7 o O I O I Q4 I O 1 Mi,

1 .1 I o-,____o:

0 0,12001-105102 I . , ,
07,' 0 o,oi*JiO.

O O./ Ä .O 047 T 3 O 1 ,0 2. I 1 ,
I , OS I O 6 3i3.o,

O Oi4 9 op 31 J I O 5 I .0 1 ! ,
i AM 1 o 0LQlB,0

O 0,5 50 O 614 I I.OI 0 1 I , ,
, 1 1 , . 0 9 2 0 0/50

O 0.7 i O O 8\0 I Oifi / p 2 , j :

flfl I OO »|l ,9,

O O.O / O O O 3 1 0.3 I O _

ill : .111. I ,0.P:_l_,O,

., .| ■ L . 1 x 1 L_ 1

0 CM IP o _il_L*_PilJ_h_u

4- - I. . . I .4 I o O 213.0,

PQlQ.. ,0O 1 O l o 4.1,0 1 L. 1 I . 1 1
I . , I [I, I 0.0,01240,

9 OIT.3.0 0 «,0 I O 8 liO 1, . 1 1 , .1.
. ,_i , _._ I : i J., »:0 1 P O I IC\

O.QilL.!.___*. -_i_-I:_i4i_4.„»i 11 1 -1 1
.1 x___l_ ■om.iiO.o.on.o

iO._UJ_.ti.CKO.. 144.1 O 4.2tO _____L _-_L_L

1 - .4- - - :- l___l____.fi! 4," :Ql_»__Ltißi
_LO_____LUQL4 ,l|Q.i_-i i 1 I 1 j

Figure II-4 DEFINITION CARD FORMATS

,0l_.t iQ.0,017,0

Ik

TABLE II-l

File Name Card

FIELD NAME COLS SIZE REMARKS

1 FILE CODE 1-4 4 Alphanumeric Code Name of File

2 FILLER 5-9 5 Zero Fill

3 CARD ACTION 10 1 I, M, or D

4 FILLER 11-12 2 Blank Fill

5 FILE NAME 13-48 36 Alphanumeric BCD File Name

6 FILLER 49-51 3 Blank Fill

7 MAX RECORD SIZE 52-57 6 Maximum Words in a Record

8 LEVEL 58-60 3 Number of Levels in File

9 FILLER 61-63 3 Blank Fill

10 SEQ KEY 64-69 6 Information Field

11 FILLER 70-80 11 Blank Fill

15

i. Field 1 defines a four-character alphanumeric code name for
the file; for example, PSNL. This code name is repeated as
the first field on every card input to the dictionary defi-
nition for the file.

ii. Field 2 is always zero-filled and is five characters in
length.

iii. Field 3 specifies the action to be taken with the file name
card by the dictionary maintenance module. Acceptable one-
character codes for this field are:

1. "I" to insert the card to a given dictionary.

2. "M" to modify a previously input file name card.

3. "D" to delete a previously input file name card.

iv. Field 4 is two characters in length and is blank-filled.

v. Field 5 contains an alphanumeric, left-justified file name
for the file up to 36 characters in length with no imbedded
blanks; f°r example, PERSONNEL.

vi. Field 6 is three characters in length and is always blank-
filled.

vii. Field 7 is a right-justified, six-digit number with leading
zeroes which defines'the maximum number of words in any rec-
ord in the file.

viii. Field 8 is a right-justified, three-digit number with leading
zeroes which defines the number of levels in the file.

ix. Field 9 is three characters in length and is always blank-
filled.

x Field 10 specifies the six-character, alphanumeric sequence
key, which may contain any arbitrary information code. This
key is printed as part of each dictionary listing heading.

xi. Field 11 is eleven characters in length and is always blank-
filled.

16

Level Structure Card

The level structure card defines each record type in a file
according to its level in the file. The user, in defining his file,
determines the level structure, if any, within the file. If the file
is a single-level, single-record type file, then only one level struc-
ture card is required. If more than one level exists in the file
structure or if more than one record type exists within a single-level
file, one level structure card per record type is required by AIDS.
For example, in the sample PERSONNEL file there are two levels and
four record types. The first level contains two record types, the
personnel record (101) and the organization record (102); and the
second level has two record types, the personnel data record (P) and
the organization data record (OD), corresponding to the 101 and 102,
respectively. The level structure cards for the PERSONNEL dictionary
are included in Figure II-3, lines three through six. The level
structure card contains 13 fields as outlined in Table II-2 and is
described as follows:

i. Field 1 contains the four-character code name of the file
exactly as in the first field of the file name card: PSNL.

ii. Field 2 is one character in length and is always zero.

iii. Field 3 specifies the unique one-to-three character record
identifier exactly as it appears in the record. The identi-
fier is left-justified in the level structure card and fol-
lowed by blanks if it is less than three characters in length.
If the file being defined to AIDS is a single-level, single-
record type file, then this field is filled with three aster-
isks (***).

iv. Field 4 is one character in length and is always zero.

v. Field 5 is a one-character code which specifies the action
to be taken with this level structure card: I, M, or D
(insert, modify, or delete).

vi. Field 6 is 38 characters in length and is always blank-filled.
»

vii. Field 7 contains a four-digit, right-justified number with
leading zeroes which defines the starting character position
of the record identifier of Field 3.

viii. Field 8 contains a four-digit, right-justified number with
leading zeroes which defines the ending character position
of the record identifier of Field 3. The number of characters
specified by Fields 7 and 8 must match the length of the rec-
ord identifier. ^7

TABLE II-2

Level Structure Card

FIELD NAME COLS SIZE REMARKS

1 FILE CODE

2 FILLER

3 RECORD ID

4 CARD TYPE

5 CARD ACTION

6 FILLER

7 START LOCATION

8 END LOCATION

9 FILLER

10 DICTIONARY LEVEL
CODE

11 FILLER

12 RECORD SIZE

13 FILLER

1-4

5

6-8

9

10

11-48

49-52

53-56

57-59

60-62

4

1

3

1

1

38

4

4

3

3

63 1

64-69 6

70-80 11

Alphanumeric Code Name of File

Zero Fill

Alphanumeric Code for Record

Zero Fill

I, M, or D

Blank Fill

Starting Character of Record ID Field

Ending Character of Record ID Field

Blank Fill

Alphanumeric Dictionary Code for
Record

Blank Fill

Record Size in Words

Blank Fill

18

ix. Field 9 is three characters in length and is always blank-
filled.

x. Field 10 is a three-character code which defines an internal
record type code called the dictionary level code and is
made up of two parts. The first digit denotes the level of
the record type being defined. The second part is a two-digit
code sequentially assigned within each level beginning with
the code 01, except in the case of a single-level, single-
record type file. In this instance, the first part is "1"
and the second part of the dictionary level code must be
"**." The dictionary level code must be unique for each
record type.

xi. Field 11 is one character in length and is always blank.

xii. Field 12 is a six-digit, right-justified number with leading
zeroes which defines the length in six-character (36-bit)
words of the record type being defined.

xiii. Field 13 is eleven characters in length and is always blank-
filled.

Field Definition Card

The user, in defining data fields, determines a set of data
fields within each record type which he wishes to use in generating
queries. It is not necessary to define each character in the record.
The order of definition of data fields within each record type can be
arranged for user convenience and need not reflect the relative order
of the data fields within the record. Overlapping data fields may
also be defined.

Two cards are required for each field definition. The first card
is the field definition card; the second is the report field definition
card described in the next subsection of this section. Sample card
inputs for both of these cards for the PERSONNEL dictionary are con-
tained in Figures II-3, II-4 and II-5. The field definition card
contains 13 fields as outlined in Table II-3 and is described as
'follows:

19

TABLE II-3

Field Definition Card

FIELD NAME COLS SIZE REMARKS

1

2

3

4

5

6

7

8

9

10

11

12

13

FILE CODE

LEVEL

FIELD NUMBER

CARD TYPE

CARD ACTION

FILLER

FIELD NAME

START LOCATION

END LOCATION

SEARCH TYPE

FIELD SIZE

DICTIONARY LEVEL
CODE

FILLER

1-4 4 Alphanumeric Code Name of File

5 1 Record Level

6-8 3 Numeric Identification of Data Field

9 1 Always "1"

10 1 I, M, or Ü

11-12 2 Blank Fill

13-48 36 Data Field Name

49-52 4 Starting Character of Data Field

53-56 4 Ending Character of Data Field

57 1 I, M, or U

58-59 2 Character Length of Data Field

60-62 3 Dictionary Level Code

63-80 18 Blank Fill

20

1. Field 1 defines the alphanumeric code name of the file and
is the same as in the file name card and level structure
card: PSNL.

ii. Field 2 defines the one-digit level of the record in which
the data field exists. Up to eight levels are allowed in a
file definition.

iii. Field 3 contains a three-digit, right-justified field number
with leading zeroes for the data field. AIDS allows a maxi-
mum of 999 fields in a level of a file definition. Each
field in the definition is assigned a field number unique
within a level, and the field numbers need not be consecutive.

iv. Field 4 is always the digit "1" to indicate that the card is
a field definition card.

v. Field 5 is a one-character code which specifies the action
to be taken with this field definition card: I, M, or D
(insert, modify, or delete).

vi. Field 6 is two characters in length and is always blank-filled.

vii. Field 7 defines the data field title. Rules for defining a
field title are:

1. Field titles must be unique within the file.

2. A field title may be a maximum of 36 characters in
length with no imbedded blanks.

3. Field titles must be entered left-justified in the
field followed by blanks.

4. A completely numeric set of characters or an already-
existing field title may not be used in combination
with any of the critical delimiters. The critical
delimiters include the period, colon, semi-colon,
left or right parenthesis, relational operators
(< , >, «), and computational operators (+, -, /, *).
For example, the characters "1-OB" are illegal as
a field title, as the digit one precedes a minus or
dash sign. However, the characters "0B-T3" are
a legal title, as long as "OB" or "T3" are not
existing titles in the file.

21

viii. Field 8 is a four-digit, right-justified number with leading
zeroes which defines the beginning character position of the
data field in the data record.

ix. Field 9 is a four-digit, right-justified number with leading
zeroes which defines the ending character position of the
data field in the data record.

x. Field 10 is a one-character code which defines the type of
search which will be performed on this data field during
retrieval by AIDS. Three search types are allowed by the
system: I, M, or U:

1. "I" (Index Search). An indexed data field allows
a comparison to be made on the first (left-most) n
characters in the field; i.e., a subset of charac-
ters beginning with the first character. For
example, an indexed comparison made on a data field
with the value "ABA" would qualify if the selection
criteria were "A", "AB", or "ABA".

2. "M" (Multiple Indexed Search). A multiple indexed
field allows repeated comparisons to be made on
contiguous subsets of n characters within the data
field until the data field is exhausted; i.e.,
imbedded and mutually exclusive subsets of charac-
ters. The number n of characters to be searched is
determined by the length of the data value used as
a selection criterion in a query. For example, a
selection criterion of "BA" would cause the follow-
ing indexed search on a data field containing the
value "ABBA". The first two data characters (AB)
would be compared against the criterion "BA".
Since the characters in the data field (BA) will
be compared against "BA", and a match would occur.

3. "U" (Unindexed Search). An unindexed search looks
for a pattern in the data field which is preceded
and followed by a field boundary and/or blank char-
acters . For example, a comparison made on the data
value "JOHN PAUL JONES " would qualify on any
of the selection criteria "JOHN", "PAUL", "JONES",
"JOHN PAUL", "PAUL JONES", or "JOHN PAUL JONES".
At least one blank character must separate parts of
the data field; more than one blank character will
be ignored by the search. In practice, an unindexed
search would only be used in text processing appli-
cations.

22

xi. Field 11 is a two digit, right-justified number with leading
zeroes which defines the number of characters in the data
field.

xii. Field 12 contains the dictionary level code of the record
type in which the defined data field resides. The three-
character code must exactly match the dictionary level code
contained in the level structure card of the corresponding
record type.

xiii. Field 13 is 18 characters in length and is blank-filled.

Report Field Definition Card

All data fields defined to AIDS must have report field headings
defined for output in formatted reports. The report field heading may
be the same as the field title or it may be different. In either case,
the report field headings must be defined to AIDS.

Examples of report field definition cards for the PERSONNEL file
are shown in Figure II-3 and II-4. The report field definition card
contains 16 fields as outlined in Table II-4 and is described as
follows:

i. Field 1 defines the four-character, alphanumeric code name
of the file and is the same as in the file name card, the level
structure card, and the field definition card: PSNL.

ii. Field 2 defines the one-digit level of the data field whose
report heading is being defined and is the same as the second
field of the data field's field definition card.

iii. Field 3 repeats the field number of the data field whose
report heading is being defined and is the same as the
third field of the data field's field definition card.

iv. Field 4 is always the digit "2" to indicate that the card
is a report field definition card.

v. Field 5 is a one-character code which defines the action to
be taken with the report field definition card: I, M, or
D (insert, modify, or delete).

vi. Field 6 is one character in length and is always blank.

vii. Field 7 contains the report field title. The report field
title may be a maximum of 46 characters in length with any
number of imbedded blanks or critical delimiters. The report
field title is left-justified in the field followed by blanks.

23

TABLE II-4

Report Field Definition Card

FIELD NAME COLS SIZE REMARKS

1 FILE CODE 1-4 4 Alphanumeric Code Name of File

2 LEVEL 5 1 Record Level

3 FIELD NUMBER 6-8 3 Numeric Identification of Data Field

4 CARD TYPE 9 1 Always "2"

5 CARD ACTION 10 1 I, M, or D

6 FILLER 11 1 Blank Fill

7 REPORT FIELD
TITLE

12-57 46 Report Field Title

8 FILLER 58-59 2 Blank Fill

9 TITLE CHARACTERS 60-61 2 Character Length of Report Field
Title + 3

10 DATA TYPE 62 1 1, 2, or 3

11 DECIMALS IN 63 1 Number of Input Decimal Places

12 DATA FIELD WIDTH 64-66 3 Character Length of Data Field + 3

13 DECIMALS OUT 67 1 Number of Output Decimal Places

14 TABLE LOOKUP
CODE

68-69 2 Lookup Table Identification

15

16 FILLER 73-80 8

Character Length of Largest
Function + 3

Blank Fill

24

vili. Field 8 Is two characters in length and is always blank-filled.

ix. Field 9 is a two-digit, right-justified number with leading
zeroes which defines the width in characters used in printing
field titles on output. Field 9 contains the size or character
length of the report field title plus the constant 3 to guaran-
tee the spacing of field titles for output.

x. Field 10 is a one-digit code which defines the data type of
the data field. There are three allowable data type codes:

1. Alphanumeric. Data fields that contain all alpha-
betic values, or numeric values with imbedded
decimal points or leading blanks should be declared
alphanumeric and assigned the code "1".

2. Numeric. Data fields that contain all numeric values
with no leading blanks and no imbedded or assumed
decimal places should be declared numeric and assigned
the code "2".

3. Decimal. Data fields that contain all numeric values
with an assumed decimal point and no leading blanks
should be declared decimal and assigned the code "3".

xi. Field 11 is a one-digit number which defines the number of
decimal places to the right of the assumed decimal point in
a decimal data field. A maximum of nine decimal places may
be defined. For alphanumeric and numeric data fields, Field
13 is always zero.

xii. Field 12 is a three-digit, right-justified number with leading
zeroes which defines the width in characters used in printing
data values on output. Field 12 contains the size or charac-
ter length of the data field width plus the constant 3 to
guarantee spacing of data fields for output.

xiii. Field 13 is a one-digit number which defines the number of
decimal places to the right of the decimal point which are
to be printed on output for a decimal data field. The number
of decimal places for a decimal data value may be truncated
or extended on output, depending on user specification. A
maximum of nine decimal places may be defined for decimal
output. For alphanumeric or numeric data fields, Field 13
is always zero.

25

xiv. Field 14 is the two-character, alphanumeric code of a lookup
table of data values to be used for a given data field for
output. The lookup table is discussed in the next section.
The table lookup code is optional; if no table lookup is
defined for a data field, Field 14 is left blank.

xv. Field 15 is a three-digit, right-justified number with leading
zeroes which contains the size of the widest function in
the lookup table for a given data field plus the constant 3
to guarantee the spacing of table lookup values for output.
If no table lookup is defined for a data field, Field 15 is
left blank.

xvi. Field 16 is eight characters in length and is always blank-
filled.

Table Lookup Card

A lookup table entry consists of an argument-function pair, in
which the argument is a valid data value for a given data field in
the file, and the function is the character string which can be
printed on output. A lookup table may contain as many entries as
there are valid data values for each field using the table. Each
entry is defined on a separate table lookup card.

The lookup table is optional. Only one lookup table may be
defined per data field, but more than one data field may use a given
lookup table. The lookup table is defined by a two-character alpha-
numeric code which is referenced by those data fields which use the
table.

Examples of a complete lookup table definition are shown in
Figure II-5. The table lookup card contains 9 fields as outlined in
Table II-5 and is described as follows:

i. Field 1 contains the four-character, alphanumeric code name
of the file and is the same as in the file name card, the
level structure card, and the data and report field defini-
tion cards: PSNL.

ii. Field 2 is a one-digit code which defines the card type and
is always the number 9.

iii. Field 3 is the two-character, alphanumeric identifier of the
table which is the same lookup table code used in the report
field definition card. The table lookup code is defined by
the user and must appear on each entry of the lookup table.

26

TABLE II-5

Table Lookup Card

FIELD NAME COLS SIZE REMARKS

1 FILE CODE 1-4 4 Alphanumeric Code Name of File

2 CARD TYPE 5 1 Always "9"

3 TABLE NUMBER 6-7 2 Alphanumeric Identification of
Table

4 FILLER 8-9 2 Zero Fill

5 CARD ACTION 10 1 I, M, or D

6 FILLER 11-12 2 Blank Fill

7 ARGUMENT 13-24 12 Coded Data Value

8 FUNCTION 25-72 48 Lookup Data Value

9 FILLER 73-80 8 Blank Fill

27

iv. Field 4 is two characters in length and is always zero-filled.

v. Field 5 is a one-character code which defines the action that
is to be taken with the table lookup card: I, M, or D
(insert, modify, or delete).

vi. Field 6 is two characters in length and is always blank-filled.

vii. Field 7 contains the coded argument which the data value from
the file must match to produce the lookup cable function in
the report. A maximum of twelve characters may be defined
as an argument. The argument is left-justified with trailing
blanks.

viii. Field 8 contains the table lookup function or value which
will be printed. A maximum of 48 characters may be defined
as a function. The function is left-justified with trailing
blanks.

ix. Field 9 is eight characters in length and is always blank-
filled.

FILE MODIFICATION

Updating an existing file definition by adding or deleting data
fields and record types or by changing the characteristics of existing
fields is accomplished by card input. Updates to an existing file
dictionary are accomplished by inputting the desired changes to the
Dictionary Definition Operation outlined in the next section. Input
for modification of the file consists of the original file card used
to define the file name with the card action field containing the code
"M" to indicate that a modification is to be made to the file defini-
tion plus any redefinition cards for the dictionary. More than one
type of modification may be performed in a single redefinition opera-
tion. Redefinitions are input in the order: deletions, additions,
modifications.

Add Capability

The user may add a data field and report field, a lookup table
or argument-function pair, or a record type to a dictionary by pre-
paring a dictionary card input as outlined in the File Definition
Procedure. The following guidelines are outlined to aid proper input
when adding to a dictionary:

28

i. A new file name card cannot be added to an existing file
definition. File name cards must always be modified.

ii. The code "IM must appear in the card action field of the card
input.

iii. Duplication of field numbers in the field and report field
definition cards must be avoided within each level of the file.

iv. Duplication of arguments in the lookup table should be avoided.

Delete Capability

The user may delete a data field and report field, a lookup table or
or argument-function pair, or a record type from a dictionary by dupli-
cating and rerunning his dictionary card definitions as originally input
to the dictionary with one exception— a "D" must appear in the card
action field of each field. The following guidelines are outlined to
aid proper input when using the delete capability:

i. The deletion of a file name card invalidates the entire file
dictionary. A more efficient method of deleting a dictionary
is to purge that dictionary from the AIDS dictionary file.

ii. If a level structure card (record type) is deleted, all data
fields in that record type must be deleted.

iii. If a data field is deleted, the corresponding report field
is automatically deleted. Field numbers belonging to deleted
data fields need not be redefined, as AIDS does not require
consecutive field numbers, just unique ones, within each
level of the file.

Modify Capability

The user may modify a data field or report field, a lookup table
or argument-function pair, a record type, or a file name by duplicating
and rerunning his dictionary card definitions as originally input to
the dictionary with two exceptions. First, the card action field must
contain an "M" to indicate that the original card definition is being
modified. Second, each card input must uniquely identify the original
card to be modified. The following guidelines are outlined to aid
proper input when using the modify capability:

t

i. Field numbers plus the file code, the level code, and the card
type code serve to uniquely identify the field or report field
definition card to be modified. Field number codes may not be

modified.

29

ii. The dictionary definition output tape from UPDICT must be
merged with all other active dictionaries and output to a
GECOS permanent sequential file.

iii. The GECOS permanent file must be converted to a random file
for AIDS operations on the dictionary.

Further descriptions of the job setups required for the Dictionary
Definition Operation are in the AIDS Operations Manual. Included
in the descriptions are explanations of the execution decks and
GECOS files.

ii. The table lookup code plus the argument, the file code, and
the card type code serve to identify the entry definition
to be modified,

iii. The record level code plus the file code and the record
identifier code serve to identify the level structure defini-
tion to be modified.

iv. The combination of file code plus file name uniquely iden-
tifies the file name definition to be modified.

DICTIONARY DEFINITION OPERATION

The Dictionary Definition Operation consists of three batch jobs:

I. The dictionary input cards must be validated by the AIDS
utility program UPDICT. Output from UPDICT is of two kinds.
One is a dictionary listing. Output in the dictionary
listings are error messages generated by any invalid input
definition cards. Also output is a listing of the valid
dictionary containing all fields that are in the dictionary.
The second type of output is a tape containing the dictionary.

30

SECTION III

AIDS TSS SUBSYSTEM

INTRODUCTION

The AIDS TSS Subsystem provides capabilities for generating
queries against any of the files defined within the system. It accepts
and validates the syntax of queries as they are input by the user.
System messages are available to guide the user in correcting syntax
errors.

QUERY LANGUAGE

The query language, or more precisely, the on-line user language,
provides access to all of the functional capabilities of the system,
including output formatting and file reformatting. The language is
divided into five major functional phrases, each of which corresponds
to a major functional capability. These include the following: RE-
TRIEVE, which is the Boolean selection phrase of the language; SORT,
which provides the capability for sorting records qualified under the
RETRIEVE phrase; COMPUTE, which provides the capability for forming
new data elements as an arithmetic function of other elements; PRINT,
which provides the capability for output page formatting; and REFORMAT,
which allows selected elements of a file to be subset and output to
tape or cards.

Syntax diagrams for the major functional phrases are included in
the subsection in which each is discussed. The notational conventions
used are as follows:

i. Components within braces j are required; the user must
choose one, and only one, of the components for inclusion in
the phrase.

ii. Components within brackets [] are optional; the user has the
choice of including one, or none, of the components for inclu-
sion in the phrase.

iii. Required phrase words are written in capital letters, and all
required words or punctuation are underlined.

iv. Components within parentheses () may be repeated an arbitrary
number of times in the phrase.

31

v. Words, or groups of hyphenated words, with initial capitali-
zation are to be replaced with a user-specified form; the
exact forms that may be used are discussed in each section.

vi. Words, or groups of hyphenated words, in lower case lettering
require that a valid substitution from the dictionary, namely,
a field title or file name, be included in the phrase.

An alphabetic list of the valid AIDS words with the meaning of
each word and a page number reference is presented in Appendix I.
Optional words are listed with the appropriate phrase description.

RETRIEVE PHRASE

The RETRIEVE phrase specifies the criteria for selection and
retrieval of records from a file. These records are collected on
disc by the system and are stored in a file referred to as the hit
file. The syntax of the RETRIEVE phrase is diagrammed in Figure III-l.
It should be noted that a valid query must include as a minimum a
RETRIEVE phrase followed by either a PRINT or a REFORMAT phrase.
Valid orders of phrase construction in a query are diagrammed in
Appendix IV.

Retrieval Algorithm

The retrieval algorithm used for single-level files (with one
or more record types) is straight-forward. Each record in the file
is retrieved serially by the system, and selection occurs on each
record type that satisfies the selection criteria implied in the
qualification portions of the RETRIEVE phrase.

The retrieval algorithm for multi-level files is more complicated.
The accurate construction of a RETRIEVE phrase for multi-level file
requires that the user understand the logical structure of the file
and the logical relationships between records. A multi-level file is
searched in groups of records called record sets. A record set is
all records which make up a single instance of a complete top-to-bottom
branch in a multi-level file. For purposes of illustration, the sample
PERSONNEL file from Section II is repeated as Figure III-2. Figure III-2
also shows the field titles assigned to the. file's data fields. As in
Section II, the sample PERSONNEL file is made up of two levels and four
record types. One record set is defined to be an instance of personnel
data for each employee; i.e. , a first-level 101 type record and an
associated second-level P type record. The other record set of this
file defined to be an instance of organization data for each organiza-
tion; i.e., a first-level 102 type record and a second-level OD type

32

RETRIEVE THRU
THROUGH LEVEL n file-name

AND
OR

Where Basic-Criterion is:

Basic-Criterion
Complex-Criteria AND

Basic-Criterion
Complex-Criteria

SCRATCH
SORT
COMPUTE
PRINT
REFORMAT

[NOT] field-title
New-Variable-Formula

PRESENT
P
[NOT] Relational

Where Complex-Criteria is:

[NOT] field-title
New-Variable-Formula

[NOT] Relational

OR " Literal'
I_n
M n
U

V
/

2 Literal^

field title

^Literar

field-title

I_n
M n
U

_ ■

I n
M n
U

AND
P
PRESENT

AND Relational "Literal"
I_n
M n
U

V
Where New-Variable-Formula is:

$Nev-Variable-Name - Formula

*This syntax form may only be used with an unnegated equals relational.

**This syntax form may only be used with a less than, or less than or equal,
relational or its equivalent.

***The syntax form for a range criteria must be both non-repetitive and non-negated.

Figure III-l. RETRIEVE Phrase Syntax

33

RECORD FORMAT

101 NUM NAME

P ORG JOBTITLE LEVEL SALARY

102 DIV TYPE TITLE

OD REPORTS COMPOSITION

SAMPLE DATA RECORDS

1 l01 1 32579 LYNN, K.R.

P 2000 5210 EMPL 6000

1 l0> 1 57060 CARR, RI.

P 2000 It 10 HEAD 24000

1l01 1 15324 CALLEGAN, R.E.

P 2100 5210 EMPL , 5400

1 l02 1 2000 j DIV REPRESENTATIVE DIVISION

1 0D
1000 21002300

1 102 1 2100 IDEPT DEVELOPMENT DEPARTMENT

1 OD ! 2000 21102120

OD 2000 2130

OD 2000 2190

m
5»"

Figure m-2 SAMPLE HIERARCHICAL FILE STRUCTURE

3^

record. During retrieval from the PERSONNEL file, each complete record
set is assembled by AIDS in core memory, and selection of the record
set occurs when it satisfies the qualification criteria of the query.

It is usually the case in a two-level file that there are multiple
instances of second-level records for each first-level record. For
example, in the PERSONNEL file, it is likely that a given organization
will have a number of OD records associated with it. Additional OD
records for that organization would then be included in the file in
the manner illustrated in Figure III-2, with OD records belonging to
a single organization record stored contiguously. Processing of
successive organization record sets proceeds as follows: AIDS retrieves
a 102 record and the first associated OD record as an initial record
set. If qualification occurs on this record set, then the whole
record set (both records) would be written in the hit file. The next
record set is constructed by reading the following record in the serial
file, which in the example is another OD record. The second record
set then consists of the first 102 record and its second related OD
record. If qualification occurs on this second set, it would also be
written in the hit file; if not, the record set is overwritten with
blanks in core memory. Each successive record set is constructed by
retaining the initial 102 record and reading the next record in the
file until the set of related OD records is exhausted. Upon encoun-
tering a new organization (102 record), AIDS discards the previous 102
record and begins constructing a record set for the new organization.
The user will note that a record set may consist of just a 102 record
if no OD records exist for that organization. It is clear that a user
must understand the structure of his file in order to successfully
qualify record sets which he wishes to retrieve. From this example,
it is evident that this retrieval algorithm extends to files of more
than two levels.

Search Methods

AIDS provides two methods for restricting the normal search of a
file. These are the restricted level search feature and the exception
reporting search feature.

Restricted Level Search Feature

The normal search method in AIDS examines complete record sets.
The restricted level search eliminates all records at a logical file
level lower than that specified. The restricted level feature can
save processing time in searching a complex file. For example, by
restructuring the search to a single level in the PERSONNEL file, any
OD or P type records would be excluded from the selection process, as
well as from the hit file.

35

Exception Reporting Search Feature

The exception reporting search feature, also called bracket
reporting, allows the user to select all logically related record sets
based on the qualification of only one of them. For example, qualifi-
cation of one occurrence of the COMPOSITION field equal to "2130" in
the sample PERSONNEL file would cause all logically related sets to
qualify; namely, the record sets with the OD records containing the
COMPOSITION fields equal to "21102120", "2130", and "2190". The
exception reporting search constructs and saves all record sets that
are logically related in a temporary file. If one or more of the record
sets qualify, the temporary file is written to the hit file. If no
occurrences qualify, the temporary file is scratched.

The exception reporting search feature is invoked in the qualifi-
cation phrase of the query by enclosing the qualification criteria in
brackets []; hence, the name bracket reporting. A capability also
exists for performing cross-branch selection by connecting bracketed
qualification criteria with the Boolean operators AND and OR.

File Name Specification

RETRIEVE must be the first word of every search phrase. The
name of the file to be queried follows the word RETRIEVE. To retrieve
records from the PERSONNEL file, the correct input is:

RETRIEVE PERSONNEL

The file name identifies the file from which hit record sets will be
selected and from which output will be generated.

Syntax of Restricted Level Search

To specify a restricted level search within a file, the words
THROUGH LEVEL n or THRU LEVEL n, where n is a number from one to eight,
must appear immediately after the word RETRIEVE and immediately before
the file name, n may be either a digit or the number spelled out:

RETRIEVE THRU LEVEL ONE PERSONNEL
RETRIEVE THROUGH LEVEL 1 PERSONNEL

In this example, only records in the first level of the PERSONNEL file;
i.e., the personnel 101 type record and the organization 102 type record,

will be searched.

36

New-Variable Definition

A temporary new variable can be defined and used in place of
field title in the RETRIEVE phrase. A new variable is composed of a
user-defined new variable name, an equals relational, and an arithmetic
formula. For example:

$MO-SALARY - SAU\RY/12

The new variable name establishes the title by which the result
of the computation is identified. A dollar sign ($) is required as
the first character of the new variable name followed by a string of
alphanumeric characters up to 35 in length which does not duplicate
any of the filefs existing field titles. An all-numeric set of char-
acters may not be used as a new variable name. There must be one
character in addition to the dollar sign, and imbedded blanks are not
allowed. Hyphens (-) may be used to separate parts of the new variable
name.

The new variable name must be separated from the formula by an
equals sign (=). The formula is any well-formed arithmetic expression
made up of valid field titles, constants, arithmetic operators, and
parentheses. Constants are any decimal number, integer, or fraction.
Functions may not be referenced within the formula; e.g., SIN (X).
The set of valid arithmetic operators are: addition (+) , subtraction
(-), multiplication (*), division (/), and exponentiation (**). Up
to three levels of parentheses may be used.

Orders of Operations

In an expression without parentheses, the calculation is performed
with the following precedence for operations:

i. Exponentiation.

ii. Division and Multiplication.

iii. Addition and Subtraction.

The priority of multiplication and division depends on the input order.
In the preceding example, the expression .05 * SALARY/12 would be
interpreted as .05 multiplied by SALARY, then divided by 12. This
same rule of input order is true for addition and subtraction.

37

Parentheses in an Arithmetic Formula

Parentheses serve to clearly delineate the precedence of opera-
tions to be performed in more complex computations. The following
example shows this use of parentheses:

$MONTHLY-SALARY = SALARY/12 + .05 * SALARY/12

$MON7HLY-SAU\RY = CSALARY + (.05 « SALARY))/12

which reduces the number of operations from four to three. Operations
within parentheses are performed first in any function or formula, with
the order of processing within each parentheses following the same
rules as for that of no parentheses. The order of processing is from the
the deepest level of parentheses to the outward level of parentheses.

Basic Criterion

The file name must be followed by at least one basic criterion
which specifies which record sets will be inserted in the hit file.
A basic criterion is a triplet composed of a field title or new vari-
able, a relational, and a criterion, in that order. The field title
is defined in the file dictionary. The relational may be any one of
those listed in the RETRIEVE word list in Appendix I. The criterion
is a literal or data field against which the data field is to be
compared.

Forms of Qualification

Three basic forms of triplets can be input to the system:

i. Field-to-field comparison.

ii. Field-to-literal comparison.

iii. Field present comparison.

The format of each is discussed separately below.

Field-to-Field Comparison. This first form of qualification
compares the data values of two fields:

RETRIEVE PERSONNEL NUM = BD

The value of the data field NUM is compared to the value of the data
field BD in each record set containing the fields NUM and BD.

38

Field-to-Literal Comparison. The field-to-literal qualification
compares a literal value (alphabetic, numeric, or alphanumeric) to the
value of a data field:

RETRIEVE PERSONNEL ORG = "2100"

The literal against which the data field ORG is to be compared is
enclosed in quotes and must not exceed 48 characters in length. All
characters in the literal, including the quotation marks, must be
input on one line in AIDS.

Field Present Comparison. The third form of qualification is
the field present comparison in which a data field is tested to see
if it contains non-blank characters. The statements:

RETRIEVE PERSONNEL ORG P
RETRIEVE PERSONNEL ORG PRESENT

both qualify those record sets in which the value of ORG is not all
blanks.

Field Search Methods

The data field which is to be compared to the criterion can be
searched using any of the following methods:

i. Indexed search.

ii. Multiple indexed search.

iii. Unindexed search.

The use of a search criterion in a query overrides the search type
defined for a given data field in the dictionary. If no search
criterion is specified by the user in his query, the system assumes
the search type in the dictionary.

Indexed Search. In an indexed search on a data field, only the
left-most characters of the data field are used for qualification.
Syntax for an indexed search is of the form I nn, where nn is a number
from 1 to 48 establishing the number of characters in the data field
which are to be compared to the criterion. Indexed search specifica-
tion is positioned after the RETRIEVE basic criterion. In the example:

RETRIEVE PERSONNEL ORG = "21" I 02

39

the specification I 02 would compare the first two characters in the
ORG data field with the criterion "21" to determine if the record set
qualifies.

Multiple Indexed Search. A multiple indexed search is identi-
fied by an M nn positioned after the RETRIEVE basic criterion where
nn is a number from 1 to 48. The data field will be examined from
the left starting with the first character, as in an indexed search.
However, if there is no qualification on the first nn characters, the
next nn characters, starting at character position nn + 1, are tested,
and this is continued until the field is exhausted.

Unindexed Search. An unindexed search is identified by a U
positioned after the RETRIEVE basic criterion. It is normally used
to examine a textual data field for the presence of a word. Unindexed
search examines between spaces or blanks within the data field and
must find the entire word with blanks or data field boundaries on
either side of it, in order for the record set to qualify. For
example,

RETRIEVE PERSONNEL NAME = "BENJAMIN11 U

requires that the literal "BENJAMIN", preceded and followed by blanks
or data field boundaries, be present in the data field. "BENJAMIN"
followed or preceded by a period or comma in the data field would not
qualify. If a literal is composed of two words which are separated
by an arbitrary number of blanks, the search will look for the two
words in the sequence given with at least one intervening blank. More
than one blank may separate the words, but these additional blanks
are ignored by the unindexed search.

Complex Criteria

Up to 100 triplets may be used in each RETRIEVE phrase. Each
triplet in the RETRIEVE phrase must be connected to the succeeding
one with AND or OR. It is sufficient to mention here that a basic
triplet has a true or false value associated with it. The connectors
AND and OR are used as in any Boolean expression and have the same
true-false connotations.

Use of Field-to-Field Comparison

Boolean connectors may not be used to connect field titles
directly. For example, the phrases:

RETRIEVE PERSONNEL ORG AND NUM EQ BD

RETRIEVE PERSONNEL BD = ORG OR NUM

40

are invalid, as ORG and NUM are joined directly by Boolean connectors.

Use of Field-to-Literal Comparison

If the contents of a particular data field are to be compared to
each of several values, then the field title may be, but does not have
to be, repeated for each comparison. For example, the phrases:

RETREIVE PERSONNEL ORG = "2100" OR ORG = "2000"

RETRIEVE PERSONNEL ORG = "2100" OR "2000"

are identical in meaning, but the second phrase contains the field
title ORG only once. OR conditions connect each literal.

Boolean connectors may also be used to link relationals and
literals for a given field title in a range comparison!

RETRIEVE PERSONNEL ORG GE "2100" AND LT "2300"

Use of Field Present Comparison

The use of the field present comparison is important when the
user wishes to search a multi-level or a single-level, multi-record
file using the LT, LESS THAN, LE, or < relationals. In the example:

RETRIEVE PERSONNEL ORG LE "2353"

AIDS would retrieve each record set sequentially in the file. If
the record types in the record set are not those implied by the use
of the data field ORG, the system will blank the entire record set
it has retrieved in core and will continue with the comparison of
the data field ORG against the blank record set available. ORG, in
this example, would qualify on the blank fields in the record set
due to the position of the blank character in the collating sequence
of the G-635. This blank record set would then be added to the hit
file as a qualifying record set.

To avoid all blank record sets qualifying in the hit file, the
following general form should be used with a less than or less than
or equal to relational:

RETRIEVE field-title
LESS THAN
LT
LE

"Literal" AND
P
PRESENT

41

RETRIEVE PERSONNEL (ORG GT "2122") AND (NUM LT "5100" AND P)

Parentheses can serve to resolve logical ambiguities in the search
criteria, as well as to decrease the number of components in the search
criteria. For example, to query on a given JOBTITLE, and either a
SALARY over a certain amount or the ORG to which the JOBTITLE contrib-
utes, the following two RETRIEVE phrases are equivalent in meaning:

RETRIEVE PERSONNEL JOBTITLE = "212V1 AND SALARY GE "10000" OR
JOBTITLE = "2124" AND ORG = "2100" OR "2122" OR "2123"

RETRIEVE PERSONNEL JOBTITLE = "2124" AM) (SALARY GE "10000" OR
ORG = "2100" OR "2122" OR "2123M)

42

The criterion PRESENT or P requires that a non-blank data value be
in the ORG data field to qualify for selection.

Use of Linked Relationals

Boolean connectors may be used to link relationals. For example,

the phrase:

RETRIEVE PERSONNEL ORG LT OR = "2100"

links the relationals LT and ■ into a less than or equal to condition,
which could be more easily expressed by the relational LE. Generally,
the linking of relationals does not add more power to the RETRIEVE
phrase, as valid relationals exist which are already combinations of
two relationals; e.g., LE and GE. An obvious exception is the PRESENT

condition. The statement:

RETRIEVE PERSONNEL ORG LT "2100" AND P

is an example of the only case where relationals may be linked by an
AND condition. All other linked relationals must be joined by the
Boolean connector OR.

Parentheses in Boolean Expressions

Parentheses may be used to resolve the ambiguities common to
logical relationships. Parentheses within the RETRIEVE syntax phrase
must be balanced; that is, each left parenthesis must have an associ-
ated right parenthesis. The system allows up to three levels of
parentheses. Parentheses must not be placed within complete basic
or complex criteria. For instance, in the following example, the
parentheses serve to clarify the components of the RETRIEVE phrase;
in the first case, a basic criterion, and in the second case, a com-
plex criteria:

The second RETRIEVE phrase decreases the number of search criteria
from six to five.

Negation

The negator NOT may be used to negate any basic search criterion
or complex criteria in the RETRIEVE phrase. The word NOT implies
the negation of whatever follows in the RETRIEVE phrase and may pre-
cede a data field title, a relational, a left parenthesis, and a left
bracket. This negation is carried through the phrase until the occur-
rence of the words AND or OR in a non-parenthesized search phrase, the
presence of a right parenthesis in a negated, parenthesized search
criteria, or the presence of a right bracket in a negated, bracketed
search criteria. The following phrases illustrate the effect of the
negator:

RETRIEVE PERSONNEL NOT (ORG GT "2100") AND P
RETRIEVE PERSONNEL NOT ORG GT "2100" AND P
RETRIEVE PERSONNEL ORG NOT GT "2100" AND P

The phrases are equivalent in meaning; each negates a GT condition
into a LE condition.

When NOT is used in a RETRIEVE phrase, the following limitations
apply:

i. NOT may not be immediately followed by NOT.

ii. The sequence "(NOT(" may not appear anywhere in the RETRIEVE
phrase.

iii. NOT may not immediately precede the connectors AND or OR.

iv. NOT may not immediately precede the words P or PRESENT.

Syntax of Exception Reporting Search

There are two forms of exception reporting: one for cross-branch
reporting, and another for single branch reporting. To use the single
branch reporting technique, brackets must precede and follow the com-
plex criteria in the RETRIEVE phrase. For example, the phrase:

RETRIEVE PERSONNEL [COMPOSITION = "2130"]

implies that a single branch exception reporting search is to be done
on the file. Note that all the elements in the phrase are enclosed
in one set of brackets. Imbedded brackets are not allowed. Parentheses
are valid within the brackets, but may not be used external to brackets.

43

The cross-branch reporting technique is a search technique that
will not be explained in this manual. It is sufficient to mention
that a cross-branch exception reporting search uses more than one
set of brackets, with the search criteria from each branch entirely
contained in one set of brackets, and multiple sets of brackets joined
by the Boolean connectors AND or OR.

Termination of RETRIEVE Phrase

The RETRIEVE phrase is terminated by a comma followed by the
connector AND. The RETRIEVE phrase may be followed by a SORT, COMPUTE,
PRINT, REFORMAT, or SCRATCH phrase.

SORT PHRASE

The SORT phrase allows the hit file to be ordered on one or more
data fields within it. The SORT phrase is optional and may follow
either a RETRIEVE or a COMPUTE phrase (discussed in the next section).
The syntax of the SORT phrase is diagrammed in Figure III-3. The
notation used is the same as that used in the previous diagram.

Sort Specification

SORT must be the first word of the phrase and must be followed
by at least one sort element. A sort element consists of a field
title or new variable name, the portion of the sorted data field to
be used as the sort key, and the direction of the sort, either ascending
or descending.

The only mandatory component of a sort element is the field title
or new variable name (previously defined in a COMPUTE phrase) to be
sorted:

SORT ORG

The direction of the sort may be specified by following the field
title or new variable name by the words ASC, ASCENDING, DSC, or
DESCENDING. If no sort direction is specified, an ascending sort is
assumed by the system. That portion of the data field to be used as
a sort key may be defined by inputting a number n from 1 to 60 pre-
ceding the field title:

SORT 2 ORG DSC

The sort key is defined to be the left-most n characters on which the
sort is ordered. The entire data field is used as the sort key if no
sub-field is specified.

44

SORT Sort-Element |AND| Sort-Element\ AND I

COMPUTE
PRINT
REFORMAT
SCRATCH

Where Sort-Element is:

[n]
$New-Variable-Name
" field-title

DESCENDING
ASCENDING
DSC
ASC

Figure III-3. SORT Phrase Syntax

45

Multiple Sorts

More than one data field or new variable may be defined as sort
keys. Each sort element is separated by commas or by the word AND.
When more than one sort element is specified, the first element entered
is the major key, and successive keys are ranked according to their
input order. For example, the SORT phrases:

SORT ORG DSC, JOBTITLE ASC, 10 NAME

SORT ORG DESCENDING AND JOBTITLE ASCENDING AND 10 NAME

will perform the initial descending sort on the data field ORG, the
second ascending sort within each ORG on JOBTITLE, and the final
ascending sort within each JOBTITLE on the first ten characters of
each name.

Sort Limitations

The total number of characters used as sort keys in all elements
may not exceed 60 characters per query. The characters may be distri-
buted among the sort elements in any proportion. The capability of
sorting on a sub-field provides the user with the ability to sort on
data fields whose combined character length is more than the 60 charac-
ter limitation.

Termination of SORT Phrase

The SORT phrase must be terminated with a comma followed by the
connector AND. The SORT phrase may be followed by any of the phrases
SCRATCH, COMPUTE, PRINT, or REFORMAT. The user should note that a
SORT may be performed before or after a COMPUTE phrase, but the
combination of a SORT followed by a COMPUTE followed by another SORT
is allowed only once in each query. Also, a SORT phrase may not
separate COMPUTE phrases.

COMPUTE PHRASE

The COMPUTE phrase allows the user to define new data fields as
arithmetic functions of other data fields and literal values. Pre-
cedence of arithmetic operations is the same as in the RETRIEVE phrase.
The format of the computed new variable is the same as that described
in the RETRIEVE phrase except that any of the valid equivalents for
the equals relational may be used (=, EQ, EQUAL, EQUALS, EQUAL TO).
The syntax of the COMPUTE phrase is illustrated in Figure III-4. The
notation used is the same as that used in earlier diagrams.

46

COMPUTE $New-Variable-Name

[BREAK ON]
ALL
NONE

EQUAL TO
EQUALS
EQUAL

gg.

field-title

n

Function

TO n DECIMAL PLACES

IF Basic-Criterion*
Complex-Criteria*

SCRATCH
SORT

AND < COMPUTE
PRINT
REFORMAT

*No New-Variable-Formula can be defined in an IF clause.

Figure III-4. COMPUTE Phrase Syntax

47

SUM and COUNT Functions

In addition to arithmetic formulas, the COMPUTE phrase allows
SUM and COUNT functions which have the form:

$New-Variable-Name

Si
EQUAL
EQUALS \ SUM
EQUAL TO COUNT
-

*

field-title

Examples of the use of COUNT and SUM functions are:

$SUM-SALARY = SUM SALARY

$NO-EMPLOYEES = COUNT NAME

where SALARY and NAME are field titles in the PERSONNEL file. The
values of these functions are the sum of field values or a count of
non-blank field instances.

The SUM function generates a running total of the data values
within a particular data field. This total can be broken or
reinitialized when the value of a specified data field changes by
using the BREAK option described next. After a break, the sum is
reinitialized to zero and SUM continues until the next break occurs.
The COUNT function counts the number of occurrences of a given data
field. The BREAK option, when used with the COUNT function,
establishes when the count is reinitialized to zero.

BREAK Option

Use of the break option in a COMPUTE phrase is designated by the
word ALL, the word NONE, or a field title. The "break" defines when
a new variable is to be inserted in the hit file and then reinitialized
to zero. The word ALL causes the designated computation to be performed
for each record set. The word NONE causes no reinitialization to occur
during all record set processing. Use of a data field title in a break
sub-phrase causes the computation to be performed when the contents
of the specified field change in the hit file. If no break field is
specified, ALL is assumed by the system. The examples below serve
to illustrate each of the break options allowed:

COMPUTE $MONTHLY-SALARY = (SALARY + (.05 :J SALARY))/12,ALL

COMPUTE $MONTHLY-SALARY = (SALARY + (.05 * SALARY))/12

48

COMPUTE $SALARY-BY-ORG = SUM SALARY, ORG

COMPUTE $NO-EMPLOYEES = COUNT NAME, NONE

The break phrase is separated from the computation by a comma.
The words "BREAK ONl?, termed non-essential words, may be used to
clarify the break phrase if desired:

COMPUTE $SALARY-BY-ORG = SUM SALARY, BREAK ON ORG

Decimal Significance Option

The decimal significance option is used to establish the number
of significant places carried in the computation and printed on output.
This is expressed as a single digit numeric 0 to 9 or the words ZERO,
ONE, ..., NINE following the formula or function in the COMPUTE phrase
and set off from the rest of the phrase by a comma. When the decimal
significance is not specified, zero places are assumed; i.e., integral
values are calculated. To illustrate:

COMPUTE $MONTHLY-SALARY = (SALARY + (.05 * SALARY)) /12, ALL, TWO

The above statement specifies that $MONTHLY-SALARY is to be computed
to two decimal places for each record set. Each computed new variable
is limited to twelve (12) digits in length by the system.

To clarify the decimal significance option, optional words such
as TO n DECIMAL PLACES, where n is the number of decimal places, are
allowed:

COMPUTE $MONTHLY-SAU\RY = (SALARY + (.05 :: SALARY)) /12, TO
2 DECIMAL PLACES, BREAK ON ALL

IF Clause Option

The domain of the COMPUTE phrase within the hit file can be
modified by using an IF clause. The IF clause option causes calcu-
lations to be performed only on record sets meeting the criteria
defined within the clause. The word IF must begin the clause followed
by any string of complex criteria connected with Boolean ANDs and ORs
and containing parentheses (see the RETRIEVE section). For instance,
the statement:

COMPUTE $MONTHLY-SALARY = (SALARY + (.05 * SALARY)) /12,2,
IF SALARY > f,10000,f

would cause the computation to be performed only on record sets with
the value of the data field SALARY greater than 10000. Two decimal
places of significance are specified, and a break field of ALL is
assumed. The order of input of the COMPUTE options is arbitrary.

49

COMPUTE Phrase Limitations

Up to 60 COMPUTE phrases may be defined in each query. Each
COMPUTE phrase is limited to:

i. 40 components, with new variable names, equals relationalst
field titles, parentheses, literals, and arithmetic operators
counting as one component each.

ii. 10 constant (literal) values.

iii. 14 field titles.

Multiple COMPUTE Phrases

The user may elect to include more than one COMPUTE phrase in
his query. To do so, the user must follow each complete phrase with
the connecting sequence ", AND" and the next COMPUTE phrase. The order
of the phrases is unimportant. For instance, the phrases:

COMPUTE $N0-EMPL0YEES = COUNT NUM, NONE, AND

COMPUTE $AVERAGE = SALARY/12, TO 2 DECIMAL PLACES, AND

COMPUTE $EMP-IN-ORG = COUNT NUM, BREAK ON ORG, IF ORG n20000"

define three new variables.

This method of entering multiple COMPUTE phrases provides the
user with an additional capability, namely, a previously defined
new variable can be used as a field title in any subsequent formula.
It cannot, however, be used in a BREAK or an IF clause or as an
argument in a SUM or COUNT function. For example,

COMPUTE $AVERAGE = SAU\RY/12, TO 2 DECIMAL PLACES, AND

COMPUTE $MONTHLY-SALARY = $AVERAGE * (.05), TO TWO DECIMAL PLACES

the new variable $AVERAGE is used as a data field in the second formula.

Termination of COMPUTE Phrase

The last COMPUTE phrase of the query must be terminated with a
comma followed by the connector AND, whereupon the user may proceed
to a SORT, PRINT, or REFORMAT phrase, or he may SCRATCH the entire
query.

50

PRINT PHRASE

The PRINT phrase is used to output a formatted hard copy con-
taining values and headings from the hit file. Features included
are system or user position specification for headings and data
values, full and summary reports, pagination control, table lookups
for coded data values, and suppression of repetitive data values.
More than one PRINT phrase may be used in each query; each PRINT
phrase generates a separate output report. The syntax of the PRINT
phrase is diagrammed in Figure III-5. The notation used is the same
as that used in earlier diagrams.

System Default Positioning

In its simplest form, the PRINT phrase consists of a list of
field titles and new variables separated by commas. When this form
of the PRINT command is used, default formatting is in effect, and
the output format is tabular with the report field titles across
the top of the page and with data values directly beneath them.
Spacing between the report field headings is automatically generated
as well as spacing between lines of data. Two lines are skipped be-
tween the report field heading and the first line of data. One line
is skipped between each line of output, and each line of output is
positioned at the left-most line boundary. For example, the PRINT
phrase:

PRINT ORG, NAME, JOBTITLE, $MONTHLY-SALARY

would yield this output format from the sample PERSONNEL file:

ORG EMPLOYEE JOB TITLE MONTHLY SALARY

2000 LYNN, K. R.
2100 CARR, P. I.
2100 CALLEGAN, R. E.

User Defined Positioning

Users may override the default formatting of the system to
generate formats more suited to their needs. Options available to
the user are horizontal positioning, vertical positioning, page
ejections, and up to five lines of output per record set based on a
120-character print line.

5210 500
1110 2000
5210 450

51

REFORMAT Output-File-Name
CARD
TAPE j_ Record-Criteria ± Field-Criteria

Field-Criteria x Record-Criteria x Field-Criteria [(- Field-Criteria

AND

r
PRINT
SCRATCH
USE
SAVE
STORE
ACCEPT

J

Where Record-Criteria is:

BKF
RECORD ill SZ. n2 BKL

field-title
$New-Variable-Name

Where Field-Criteria is:

field-title
j>New-Variable-Name

LOC n3 114
BF
ZF

RJ
U

STF
STL

C ^Constant^ n5

' GT
EQ
LT

■^

W
^Literal^
$New-Variable-Name
field-title

*At least one output field must be defined before a constant insertion can
be defined.

Figure III-6. REFORMAT Phrase Syntax

52

Horizontal Positioning

The horizontal position of each field on the page is determined
by specifying the starting character position (print column) after
the field title. Valid subphrases for horizontal positioning within
a line are POS n, COLUMN POSITION n, and CHARACTER POSITION n, where
n is a number from 2 to 120. A valid PRINT phrase with horizontal
positioning specified is:

PRINT NUM POS 2, NAME POS 15, SALARY POS 55

The user must allow for the maximum number of characters in each
data value plus the constant three between each assigned position; a
data field may not overlap line boundaries.

Vertical Positioning

Vertical line spacing up to a maximum of eight spaces may be
specified between successive print lines. Valid subphrases for
vertical positioning within a page are SPACE n, SLEW n, and SKIP n,
where n is a number from 1 to 8. Alternatively, a semicolon may be
used for spacing to the next line instead of SPACE 1. The new output
line, in any case, is positioned from the left-most line boundary
unless horizontal positioning has been specified. Vertical positioning
subphrases may be included in the PRINT phrase either before or after
a field title. Vertical line spacing subphrases appearing before
Cafter) the field title cause line spacing in the output report to
occur before (after) the printing of the corresponding data values.

Page Ejection

The inclusion of a vertical spacing subphrase, SLEW 9, SKIP 9,
SPACE 9, or TOP before (after) a data field causes a skip to a new
page before (after) the next data field is output. For example,
the PRINT phrase:

PRINT TOP NAME, NUM, SALARY

causes each group of 3 values of output to be printed on a new page.

Multiple Output Lines

Output from each record set is limited to a total of five printed
lines, each a maximum of 120 characters in length. This implies a
maximum of 600 printed characters per record set, but spacing between
data fields typically limits this to approximately 500 characters.

53

To produce multiple lines of output from a record set using
default positioning, the user inputs his list of data field titles
in the PRINT phrase and relies on the system to position the output
within each 120-character line. Report field headings will reflect
the levels of output automatically. Default positioning does not
split data fields over line boundaries.

User specified positioning allows more flexibility for structuring
lines of output from a record set. The user can generate multiple
lines of output by defining vertical line spacing either before or
after a data field title, and by positioning subsequent data fields
within the new line. For instance, the statement:

PRINT NUM; SALARY POS 30; NAME POS 50

will position each occurrence of NUM, SALARY, and NAME as follows:

BADGE

SALARY

EMPLOYEE
32579

6000
LYNN, K. R.

57060
24000

CARR, P. I.
15324

5400
CALLEGAN, R. E.

The occurrences of NAME, NUM, and SALARY within a record set are
positioned on separate lines. The data values are centered beneath
the field titles as shown.

Output Devices

The user should be aware of the line length restriction of each
type of output device when formatting a report. The line printer
allows up to five lines of output per record set, where each line
is a maximum of 120 characters in length. The teletype also allows
600 characters per record set for output where the output is distributed
over 10 lines, alternately 72 characters and 48 characters long from
the left margin.

The PRINT module is organized around the line printer format;
each print line generates a pair of teletype lines. Spacing within
a line of output on a teletype must take into consideration the wrap-
around effect. Vertical spacing options are the same as those for

54

the line printer. However, the user should be aware that if fewer
than 72 characters are to be printed per print line, a space would
automatically be created between successive lines of output on the
teletype. Hence, by not using print positions 73-120 on any print
line, spaces can be inserted between each teletype output line.
Horizontal spacing options are also the same as those for the line
printer. The character positions of each data field are identified
by the relative character position within the printer line; i.e.,
character positions 2 through 120.

Data Output Suppression

It is possible for the hit file to be in a sort sequence such
that a given data value is consecutively repeated in many record
sets for a given field. On output, the repetition of this value
might be undesirable for a report. Suppression of repetitive values
of a data field is accomplished by using a group subphrase following
the field title. Valid group subphrases are GROUP n, BREAK n, and
G n, where n is a number from 1 to 9. Each application of a group
suppression must have a unique identifier n assigned consecutively
within the PRINT phrase. For instance, it might be desirable to
eliminate the repetitive printing of the values of ORG. This can
be achieved using the following PRINT phrase:

PRINT ORG G 1, NAME, JOBTITLE, SALARY

This would yield the report:

ORG EMPLOYEE J0B TITLE SALARY

2000 LYNN, K. R. 5210 6000
2100 CARR, P. I. 1110 2M)00

CALLEGAN, R. E. 5210 5^00

Only the first occurrence of each data value is printed for the field
title ORG; subsequent contiguous occurrences of the same data value
are suppressed.

The precedence of suppression in a report which has more than
one group suppression follows the rule that if the value of a data
field that is group suppressed changes, all data fields to the right
of the given data field in the report will be printed, along with
the changed data field. In other words, a change in G 1 will cause
any data fields controlled by G 2 through G 9 to be printed even if
they themselves have not changed. However, a change in G 4 will
cause the data fields controlled by G 5 to G 9 to be printed but
will not affect G 1 to G 3. For example, the following PRINT phrase:

55

PRINT ORG G 1, JOBTITLE G 2, SALARY, NAME

would yield the following report:

ORG JOB TITLE SALARY EMPLOYEE

2000 5210 6000 LYNN, K. R.
2100 1110 24000 CARR, P. I.

5210 5400 CALLEGAN, R. E
2200 5210 6700 MILLS, J. R.

5900 JOHNS, F. C.
2300 5210 5400 FRANK, E. B.

Even though the value of JOBTITLE did not change for the last four
record sets in the example, JOBTITLE was printed whenever ORG changed.

It is possible to control the suppression and printing of a data
field by forcing its dependence on the printing of a group suppression
field. This is known as keying the suppression of a data field to a
group suppression. Keyed suppression of values, not necessarily repe-
titive values, may be accomplished using the sub-phrases SUPPRESS n,
STAR n, and * n, where n is the number of the control group to which
the suppressed or controlled data field is keyed. For example, the
* 3 data field is suppressed whenever the G 3 field is suppressed.
The keyed suppression field must always follow the group suppression
field to which it is keyed in the PRINT phrase.

Maximum utility of keyed suppression relies on the userfs know-
ledge of the hit file. For instance, if a hit file were sorted on
ORG in ascending order, and SALARY in descending order, it would be
possible to list each organization, along with all its employees and
only the highest salary within each organization, using keyed suppres-
sion:

PRINT ORG G 1, NAME, SALARY " 1

This PRINT phrase would yield the following report, in which the value
of SALARY is only printed when the value of ORG is printed:

ORG

2000
2100

2200

2300

EMPLOYEE SALAR

LYNN, K. R. 6000
CARR, P. I. 24000
CALLEGAN, R. E.
MILLS, J. R. 6700
JOHNS, F. C.
FRANK, E. B. 5400

56

Table Lookup

Data fields which have an argument-function table associated
with them in the file dictionary can be converted to the function
or output by appending a table lookup sub-phrase to the field title
in the PRINT phrase. Valid table lookup sub-phrases are TABLE
LOOKUP, TLU, TABLE, LOOKUP, and L. For example, the following PRINT
phrase:

PRINT ORG NAME, JOBTITLE TLU, SALARY

would generate the following report with table lookup functions for
JOBTITLE:

ORG EMPLOYEE JOB TITLE SALARY

2000 LYNN, K. R. SECRETARY 6000
2100 CARR, P. I. SYSTEMS ENGR 2^000
2100 CALLEGAN, R. E. SECRETARY 5^00

If no function exists for a given argument, the argument itself will
be output during a table lookup.

Output Volume Control

The number of pages of output in a given report, as well as
whether the report is to be a summary report or a full report, may
be specified in the PRINT phrase immediately following the word
PRINT.

Page Control

The number of pages to which the output of a report is to be
truncated to is indicated by a number preceding the first field
title. For example, a report of no greater than seven pages is
output by the following statement:

PRINT 7 NAME, NUM

Summary Report

AIDS always assumes that all record sets in the hit file are to
be processed for output in a full report, which may also be specified
by the subphrases F or FULL following the word PRINT. AIDS also
allows summary reports to be output. A summary report is one in
which only those record sets in the hit file on which a new variable

was computed are processed for output. A summary report must be

57

specified by the subphrases SUMMARY, SUM, or SM immediately following
the word PRINT.

The number of pages to be output for a summary report may be
specified by a number following or preceding the summary specifica-
tion and preceding the first field title. For example, a seven page
summary report is indicated by the PRINT phrase:

PRINT SUM 7 NAME, NUM, $MONTHLY-SALARY

Termination of PRINT Phrase

The PRINT phrase must be terminated by a comma followed by the
connector AND. The PRINT phrase may be followed by the phrases
REFORMAT, SCRATCH, or PRINT, The user may also go to the operational
query commands where he may ACCEPT the query for processing, STORE
the query, SAVE the hit file generated by the query, or USE a
previously saved hit file as the input data file for this query.
Operational query commands are discussed in Section IV.

REFORMAT PHRASE

The REFORMAT phrase allows selected data fields within records
in a hit file to be extracted and written out onto tape or cards.
This subset of the file can then be processed by other user-generated
programs and, if a dictionary is written for the output file, it may
then be accessed using AIDS.

The basic element of the REFORMAT phrase contains the field
title of the source data field, the desired location of the data
value in the output record, editing information for the output field
such as blank or zero fill, or table lookup conversion. Additional
features are also available, such as the ability to insert a constant
in the output record either unconditionally or based on the value of
the source field and a reference literal. The syntax of the REFORMAT
phrase is diagrammed in Figure III-6. The notation used is the same
as that used in earlier diagrams.

REFORMAT Output Media

REFORMAT must be the first word of every REFORMAT phrase,
followed by a three-character alphanumeric identifier for the output
file, and the output media specification, TAPE or CARD:

REFORMAT POF CARD.

58

PRINT [n]

FULL
F
SUMMARY
SUM
SM

Output-Item [<* Output-Item) AND

SCRATCH
PRINT
REFORMAT
ACCEPT
STORE
SAVE
USE

Where Output-Itern is:

SPACE n
SLEW n
SKIP n
TOP
•

$New-Variable-Name
field-title

TABLE
LOOKUP
TABLE LOOKUP
TLU

GROUP n
BREAK n
G n
SUPPRESS l rs—
STAR n

POS n
CHARACTER POSITION n
COLUMN POSITION n

SPACE n
SLEW n

j SKIP n
TOP

Figure III-5. PRINT Phrase Syntax

This output specification must be separated by a comma from the
remainder of the REFORMAT phrase.

The physical output media from the REFORMAT module is always
magnetic tape. If CARD has been specified as the output form, the
output tape contains card images, which must be converted to
punched cards using the G-635 BMC (Bulk Media Conversion) utility
program.

Limitations on REFORMAT Output

Limitations on output from the REFORMAT module are as follows:

i. A maximum of 6,000 characters may be output from any
record set in the hit file.

ii. The maximum output record size is 1,800 characters.

iii. The maximum number of output data fields for all record
types is 400.

Record Definition and Identification

The output media specification must be followed by at least one
and not more than 50 record specifications. The word RECORD must be
the first word of each of these specifications. Immediately
following the word RECORD is a user-assigned numeric between 1 and
50 inclusive which defines each record type. Numbers must be
assigned to record types sequentially beginning with 1:

RECORD 1

Record Size

The phrase S2 n defines the size of the output record in
characters, where n is a number between 1 and 1800. For example:

RECORD 1 S2 80

When the output media is defined to be CARD, output records are
written one per card image, left-justified with trailing blanks.

Break Field

The user must specify the point during hit file processing when
the output record is complete and should be written out. This is
done by keying the output point to a data value change or break in

60

the hit file. This break may be keyed to any field in the hit file.
The break field in the REFORMAT phrase is normally used either in
conjunction with a break field from a COMPUTE phrase, if a computa-
tion has been performed in the hit file, or with the order of data
which has been sorted in the hit file.

The break field may be keyed to the first or last occurrence of
a data value in the hit file using the words BKF and BKL respectively.
If a data value is to be written to an output record from every
record set, the break field specification of BKF must be used, and
the break field must be a valid field title or new variable name in
the hit file whose value is unique. For example:

RECORD 1 SZ 80 BKF NAME,

Reformatted Field Definition

The reformatted field definition follows the reformatted record
definition and is separated from it by commas. At least one
reformatted field definition must be specified for each record.

Output Field Location

The first parameter in each reformatted field definition is a
valid field title or name of a previously defined new variable which
specifies the data field that is to be output in the reformatted record.
The data field or new variable location in the output record is
specified for each output field using the phrase LOC n- n~ where n-
and n« are numbers defining the beginning and ending character
positions in which the reformatted field will reside. For example:

REFORMAT POF CARD, RECORD 1 SZ 80 BKL SALARY, NAME LOC 3 35,

Each reformatted field definition is terminated by a comma. Optional
field specifications (described next) must follow the field title
and output locations. Optional field specifications may be input in
any order following the field location.

Field Justification

An output data value may be right or left justified in an out-
put field using the codes RJ or LJ respectively. For example:

NAME LOC 3 35 RJ,

If no field justification is specified, the system assumes LJ.

61

Field Fillers

If the data value does not fill the defined output field loca-
tion, it may be padded with blanks or zeroes using the codes BF or
ZF respectively. For example:

NAME LOC 3 35 BF LJ,

If no field filler is specified, BF is assumed by the system.

Table Lookup

The use of the code L specifies that the output data value is
to be a table lookup function. For example:

JOBTITLE LOC 36 ^5 L BF,

The table lookup performed by the REFORMAT module is done using the
table associated with the input field title in the dictionary of
the input data file.

Zone Stripping

Sign overpunch bits in the first or last character of a data
value may be converted to a sign character (+ or -) and moved to
the first character position of the output field. This is done using
the codes STF or STL respectively. For example:

NUM LOC 50 5^ ZF STF,

NUM LOC 50 5*+ ZF STL,

An additional character must be allocated to the output field to
accommodate the sign character.

C ^Constant^ n [Relational %iteral^]

The code C is used to specify that the sub-phrase is a constant inser-
tion sub-phrase. The constant value to be inserted in the reformatted
record follows the code C and must be enclosed in quotation marks.

62

Constant Insertion

The constant insertion feature allows the user to specify con-
stants for insertion in an output record, either conditionally or
unconditionally. Up to 10 constant insertions may be used in each
REFORMAT phrase. The syntax of this feature is as follows:

n specifies the starting character position for the constant in the
output record. The remainder of the sub-phrase is optional and is
used to conditionally insert the constant value in the output record
depending on the value of the data field in the REFORMAT phrase
which immediately precedes the constant insertion sub-phrase. Constant
insertions may not utilize any of the filler, justification, or table
lookup options. The constant insertion feature is terminated by a
comma.

For example, the user may desire to add the constant data value
2000 in character position 41 of each reformatted record:

REFORMAT POF CARD, RECORD 1 SZ 80 BKF NAME, NAME LOC 1 40
LJ BF, C "2000" 41

The conditional constant insertion is dependent on the value of the
data field specified immediately preceding the constant insertion

REFORMAT POF CARD, RECORD 1 SZ 80, BKF NAME, NAME LOC 1 40
LJ BF, C "2000" 41 EQ "CARR, P. I."

In this case, the value 2000 is added to the output record starting
in character position 41 if the value of the data field NAME is
equal to "CARR, P. I." Valid relations are EQ, GT, or LT. Nega-
tion is not allowed. The criteria CARR, P. I. must be enclosed in
quotes.

REFORMAT Operation

The output record format is dependent upon the sequence in
which the data fields for that record are input to the REFORMAT
phrase. In general, the last data field moved to a location in the
output record, the move being dependent on the input order of the
data fields in the REFORMAT phrase, will define what value is in that
location. This implies that the REFORMAT operation does not prevent
the definition of a data field location which overlaps a location
assigned to another data field.

The REFORMAT operation, properly understood, can be useful. To
better understand the operation, consider the statement:

REFORMAT POF CARD, RECORD 1 SZ 80, $MONTHLY-SALARY LOC 5 16,

$EMP-IN-ORG LOC 1 12, ORG LOC 1 4

The new variable $MONTHLY-SALARY is moved to character positions 5
through 6. Assuming that only the right-most four digits of
$MONTHLY-SALARY have meaningful data and the remaining leading eight

63

digits are zeroes, the new variable $EMP-IN-ORG is moved next into
positions 1 through 12 over the eight zero digits. Again, assuming
that $EMP-IN-ORG contains eight or less digits of value, the data
field ORG is moved into the first four character positions of the
output record. Obviously, effective use of the REFORMAT operation
requires that the user have knowledge of the input file and the data
values he wishes to move.

Termination of REFORMAT Phrase

The REFORMAT phrase must be terminated with a comma followed
by the connector AND. The REFORMAT phrase may be followed by the
phrases SCRATCH or PRINT. The user may also go to the operational
query commands where he may ACCEPT the query for processing, STORE
the query, SAVE the hit file generated by the query, or USE a pre-
viously saved hit file as the input data file for this query. Opera-
tional query commands are discussed in Section IV.

64

SECTION IV

ON-LINE USE

USER STARTUP

The user accesses the General Time-Sharing System (GE-TSS) by
following the standard log-on procedures used by his facility.
Following the input of a valid user key, GE-TSS requests the name
of the system he wishes to access:

SYSTEM? AIDS

On the same line as the system request, the user inputs the word
AIDS, followed by a carriage return to access the AIDS data manage-
ment system.

At this point in the log-on procedure, AIDS makes a subsystem
request followed by a carriage return:

SUBSYSTEM?
EXPERT

Valid inputs in response to a subsystem request are EXPERT, QUERY,
SYSTEM or BYE. The AIDS log-on procedure and the valid inputs for
a subsystem request are diagrammed in Figure IV-1. The word EXPERT
allows the user to go directly to query input and syntax validation.
QUERY allows the user to go into the computer-aided instruction
(CAI) mode, where he has the option of two submodes, a read-only
mode or a query development mode with step-by-step instruction.
The word SYSTEM brings the user up to the system level of GE-TSS,
where he may transfer to another system. The word BYE causes GE-TSS
to cease operation, and is, in effect, a log-off from GE-TSS.

QUERY FORMULATION

Upon receipt of either the EXPERT or QUERY subsystem requests,
AIDS prints the following heading:

THIS IS REACTIVE EDIT
AT NN.NNN ON MM/DD/YY

where NN.NNN is the clock time, and MM/DD/YY is the current date.

65

Logon —► SYSTEM? AIDS —► -SUBSYSTEM? <

EXPERT■
QUERY
SYSTEM
BYE

REQUEST ^I(T*
Tutorial
SYSTEM?
Logoff

*EXPERT mode options are diagrammed in Figure IV-3.

Figure IV-1. AIDS Logon Procedure

66

Query formulation may be performed in either the QUERY or EXPERT
mode of AIDS. The QUERY mode is not discussed here, as the options
available to the user throughout the tutorial are fully outlined.
The EXPERT mode is discussed below.

The READY prompting command is output to indicate that user
input is expected. Following the initial output heading, AIDS
requires the user to input a request identifier, both to identify
the transaction, and if desired, to name a query. Valid inputs
are shown in Figure IV-2. The word REQUEST must be followed by a
transaction (or query) identification which is an alphanumeric code
up to a maximum of twelve characters in length enclosed in quotation
marks:

READY
REQUEST "QUERY-1"

Each line of input is terminated by a carriage return, whereupon
AIDS performs syntax validation on that line and outputs the next
prompting command or an appropriate error message.

The initial request ID may be followed by any of the operational
subsystem commands (discussed below) or a query. Each query requires
a request ID, but more than one non-query transaction may be per-
formed under a given request ID. The following example illustrates
proper Input of a query:

REQUEST "QUERY-1" RETRIEVE PERSONNEL ORG P, AND PRINT ORG,
READY

Upon completion of a query, the user must input an operational query
command which direct AIDS as to what is to be done with the query.
Operational query commands are discussed in the next subsection of
on-line use and are diagrammed in Figure IV-2.

OPERATIONAL COMMANDS

AIDS allows two types of operational commands: operational
query commands and operational subsystem commands. Each type is
discussed below.

Operational Query Commands

At the completion of a query, the user has the choice of storing
the query in the saved query file for subsequent usage, of saving
the hit file generated by the query on a specified tape, of using a

67

SCRATCH

REQUEST ^EcT Complete-Query I fSTORE

USE Id
SAVE Tape-Id

i
ACCEPT

Figure IV-2. Operational Query Commands

68

designated saved hit file in place of the master data file, of dis-
carding the present query, or of accepting the query for a batch
run. The words used for these commands are, respectively, STORE,
SAVE, USE, SCRATCH, and ACCEPT. (See Figure IV-2.) The commands to
SAVE a hit file, to STORE a query, and to USE a saved hit file are
optional. If used, these commands must be followed by an ACCEPT command.

STORE Command

The STORE command is optional and is entered immediately
following completion of a query. The STORE command causes the query
to be written onto disk in a stored query file so the query may be
used again. The command, as is the case with all operational
commands, may be entered on the same line as the query, or on the
line following a prompting command:

REQUEST "QUERY-1" RETRIEVE PERSONNEL ORG P, AND PRINT ORG, AND STORE

REQUEST "QUERY-1" RETRIEVE PERSONNEL ORG P, AND PRINT ORG,
READY
AND STORE

USE Command

The USE command is optional and is entered immediately following
completion of a query. The USE command identifies a saved hit file
to be used as the input data file for this query. The saved hit
file name is input immediately following the USE command.

SAVE Command

The SAVE command is optional and is entered immediately following
completion of a query. The SAVE command directs the batch processor
to save the hit file generated by the query on a designated tape.
The five-digit tape number of the tape on which the hit file is to
be saved is input immediately following the SAVE command. If no
specific tape is desired, the digits "99999" may be entered, and
the tape will be assigned by the facility. AIDS cannot identify
the reel number for subsequent processing if "99999" is used.

SCRATCH Command

The SCRATCH command is optional and is entered immediately
following completion of a query. The SCRATCH command causes the
query to be deleted from the system.

69

ACCEPT Command

The ACCEPT command is entered immediately following completion
of a query or following any of the optional operational query commands:

REQUEST "QUERY-1" RETRIEVE PERSONNEL ORG P, AND PRINT ORG,
READY
AND STORE ACCEPT

The ACCEPT command causes the query to be written onto disk in the
query list for subsequent batch processing.

Operational Subsystem Commands

Subsystem commands allow the user to list all stored queries
and saved hit files in the system, to delete a stored query from
the system, to release a saved hit file and allow the assigned tape
to be reused, to request another query input, to return to the
system level of GE-TSS, and to terminate dialogue with the system.
The words used for these options, respectively, are CATALOG, DELETE,
RELEASE, REQUEST, DONE, and STOP. These commands may not be input
during active query formulation or preceding the operational query
commands. Figure IV-3 illustrates the syntax of the operational
query commands.

CATALOG Command

The CATALOG command will list any stored queries and saved hit
files for a given user identification.

DELETE Command

The DELETE command allows the user to delete a stored query
from the saved query file. The request ID of the query to be
deleted is input following the DELETE command.

RELEASE Command

The RELEASE command allows the user to release a saved hit file
from the saved hit file list. The hit file identification is input
following the RELEASE command word.

REQUEST Command

The REQUEST command is followed by a request identification, or
query ID$ enclosed in quotation marks, which names a query and/or
indicates to AIDS that a transaction will commence. Each query
requires a unique query ID.

70

/ I < Complete-Query* Operational-Query-Command**]
/ CATALOG

REQUEST ^I<T f / DELETE Id
I] RELEASE Hit-File-Id
\ RUN Idl; Id2;...; Idm, Hit-File-Id;...; Idn.
\ v.

*Every query must be preceded by a unique request ID.
**Operational query commands are diagrammed in Figure IV-2.

fDONE —* SYSTEM?*\
STOP —* Logoff)

Figure IV-3. Command Options in EXPERT Mode

RUN Command

The RUN command allows the user to develop requests using stored
queries and master files or saved hit files. More than one query,
either against a saved hit file or master file, may be input on the
line following the RUN command word. The query ID must appear first
followed by punctuation. The punctuation may be a comma if a hit
file ID is to be input, a semicolon if the query is to be run against
the master file and another request follows, or a period if the query
is against the master file and there are no further requests. If a
comma is found, the next word must identify a saved hit file. The
saved hit file ID is followed by a period if there are no further
saved query requests or a semicolon if there are further requests.

DONE Command

The DONE command allows the user to return to the system level
of GE-TSS, where the user can then request access to another system
or terminate his dialogue with GE-TSS.

STOP Command

The STOP command terminates the on-line operation with AIDS.
The STOP command is, in effect, a logoff from both AIDS and GE-TSS.

I. A. Marcus

&y(USULU4^

Command and Management Systems

CAM:le

72

APPENDIX I

PHRASE WORD LIST

Word

RETRIEVE

THROUGH LEVEL n
THRU LEVEL n

EQUAL TO
EQUALS
EQUAL
EQ

Description Page

A data file and selection criteria for 32
retrieval is specified.

A restricted level search is specified.

An equals relational is defined.*

36

38

NE
UNEQUAL

GREATER THAN
GT

An unequals relational is defined.* 38

A greater than relational is defined.* 38

GE

LESS THAN
LT

A greater than or equals relational is 38
defined.*

A less than relational is defined.* 38

LE

PRESENT
P

I n

M n

U

A less than or equal relational is 38
defined.*

A present relational is defined.

An indexed search is specified.

A multiple indexed search is specified.

An unindexed search is specified.

39

39

40

40

Logical combinations of two of the above relationals are also valid;
e.g., LESS THAN OR =. The connectors AND or OR must separate each
relational. 73

Word

SORT

DSC
DESCENDING

ASC
ASCENDING

nn

COMPUTE

SUM

COUNT

IF

BREAK

PRINT

SM
SUM
SUMMARY

F
FULL

TOP

Description Page

A sorted hit file is output. 44

A descending sort is requested. 44

An ascending sort is requested. 44

A report is sorted on the first nn 44
characters of a data field.

A calculated result from an arithmetic 46
formula or a function is output.

A sum of data values are output.

A count of occurrences of a data field
is output.

A conditional computation is performed.

A computation is performed within a
sort key.

A list of individual values is output.

A summary report is output.

A full report is output.

A report is positioned at the top of a
page.

48

48

49

48

51

57

57

53

SPACE n
SLEW n
SKIP n

Print lines are spaced within a page. 53

CHARACTER POSITION n
COLUMN POSITION n
POS n

Data fields are positioned within an
output line.

53

74

Word Description Page

TABLE
TABLE LOOKUP
TLU
LOOKUP
L

GROUP n
BREAK n
G n
SUPPRESS n
* n
STAR n

REFORMAT

CARD

TAPE

RECORD n

SZ n

BKF
BKL

LOC m Ti2

BF

ZF

LJ

RJ

STFI
STLl

L

C

A lookup table function is output. 57

Repeating occurrences of a data value are
suppressed for output.

Tape or cards are output.

Card output is requested.

Tape output is requested.

Record type is defined.

The output record size is defined.

55

58

58

58

60

60

An output record is generated on the first 60
or last occurrence of a value in a data field.

Location of a field is defined on the output 61
record.

Blank fill is defined for an output field. 62

Zero fill is defined for an output field. 62

An output field is left-justified. 61

An output field is right-justified. 61

An output field will be dezoned and the 62
appropriate sign will precede the output
field (used to strip sign overpunch).

A table lookup value is output. 62

A user-defined constant value is output. 62

75

APPENDIX II

FILE DEFINITION CARD FORMATS

File Name Card

FIELD NAME COLS SIZE REMARKS

1 FILE CODE 1-4 4 Alphanumeric Code Name of File

2 FILLER 5-9 5 Zero Fill

3 CARD ACTION 10 1 I, M, or D

4 FILLER 11-12 2 Blank Fill

5 FILE NAME 13-48 36 Alphanumeric BCD File Name

6 FILLER 49-51 3 Blank Fill

7 MAX RECORD SIZE 52-57 6 Maximum Words in a Record

8 LEVEL 58-60 3 Number of Levels in File

9 FILLER 61-63 3 Blank Fill

10 SEQ KEY 64-69 6 Information Field

11 FILLER 70-80 11 Blank Fill

76

Level Structure Card

FIELD NAME COLS

1 FILE CODE 1-4

2 FILLER 5

3 RECORD ID 6-8

4 CARD TYPE 9

5 CARD ACTION 10

6 FILLER 11-48

7 START LOCATION 49-52

8 END LOCATION 53-56

9 FILLER 57-59

10 DICTIONARY 60-62
LEVEL CODE

11 FILLER 63

12 RECORD SIZE 64-69

13 FILLER 70-80

SIZE REMARKS

4 Alphanumeric Code Name of File

1 Zero Fill

3 Alphanumeric Code for Record

1 Zero Fill

1 I, M, or D

38 Blank Fill

4 Starting Character of Record ID Field

4 Ending Character of Record ID Field

3 Blank Fill

3 Alphanumeric Dictionary Code
for Record

1 Blank Fill

6 Record Size in Words

11 Blank Fill

77

Field Definition Card

FIELD NAME

1

2

3

4

5

6

7

8

9

10

11

12

13

FILE CODE

LEVEL

FIELD NUMBER

CARD TYPE

CARD ACTION

FILLER

FIELD NAME

START LOCATION

END LOCATION

SEARCH TYPE

FIELD SIZE

DICTIONARY
LEVEL CODE

FILLER

COLS

1-4

5

6-8

9

10

11-12

13-48

49-52

53-56

57

58-59

60-62

63-80

SIZE REMARKS

4

1

3

1

1

2

36

4

4

1

2

3

18

Alphanumeric Code Name of File

Record Level

Numeric Identification of Data Field

Always "1"

I, M, or D

Blank Fill

Data Field Name

Starting Character of Data Field

Ending Character of Data Field

I, M, or U

Character Length of Data Field

Dictionary Level Code

Blank Fill

78

Report Field Definition Card

FIELD NAME COLS SIZE REMARKS

1 FILE CODE 1-4 4 Alphanumeric Code Name of File

2 LEVEL 5 1 Record Level

3 FIELD NUMBER 6-8 3 Numeric Identification of Data Field

4 CARD TYPE 9 1 Always "2"

5 CARD ACTION 10 1 I, M, or D

6 FILLER 11 1 Blank Fill

7 REPORT FIELD
TITLE

12-57 46 Report Field Title

8 FILLER 58-59 2 Blank Fill

9 TITLE CHARACTERS 60-61 2 Character Length of Report Field
Title + 3

10 DATA TYPE 62 1 1, 2, or 3

11 DECIMALS IN 63 1 Number of Input Decimal Places

12 DATA FIELD WIDTH 64-66 3 Character Length of Data Field + 3

13 DECIMALS OUT 67 1 Number of Output Decimal Places

14 TABLE LOOKUP
CODE

68-69 2 Lookup Table Identification

15 LOOKUP WIDTH 70-72 3 Character Length of Largest
Function + 3

16 FILLER 73-80 8 Blank Fill

79

Table Lookup Card

FIELD NAME COLS SIZE REMARKS

1 FILE CODE 1-4 4 Alphanumeric Code Name of F

2 CARD TYPE 5 1 Always "9"

3 TABLE NUMBER 6-7 2 Alphanumeric Identification
of Table

4 FILLER 8-9 2 Zero Fill

5 CARD ACTION 10 1 I, M, or D

6 FILLER 11-12 2 Blank Fill

7 ARGUMENT 13-24 12 Coded Data Value

8 FUNCTION 25-72 48 Lookup Data Value

9 FILLER 73-80 8 Blank Fill

APPENDIX III

UNIQUE TERMINAL CHARACTERISTICS

GE TERMINET-300

The GE Terminet-300 may be used for remote configurations.
During AIDS operation, AIDs generates all output messages printed
on this device and controls the processing of all inputs at this
device.

i. Input expected is prompted by a READY command. The user
must wait until this is printed; all characters submitted
prior to receiving this command are lost.

ii. Input completion is indicated to AIDS by a carriage return,

iii. Backspacing is accomplished by the use of the character
@ which AIDS interprets as a backspace; i.e., DAXY@@TA
becomes DATA. For each input of the special character
@, a character to the left is effectively removed.

iv. Multiple line inputs are allowed. Each input line is
terminated by a carriage return, and each new line is
preceded by a prompting command.

v. Breaking of the printing of output messages by AIDS is
allowed by the use of the interrupt button.

81

RETRIEVE OPERATIONAL
QUERY
COMMANDS

s

APPENDIX IK VALID ORDER OF PHRASES IN A QUERY

Security Classification

DOCUMENT CONTROL DATA -R&D
rSecurity classification of title, body of abstract and indexing annotation must be entered when the overall report is classified^ !L

l ORIGINATING A C T i v i T Y (Corporate author)

The MITRE Corporation
P. O. Box 208
Bedford, Massachusetts 01730

2«. REPORT SECURITY CLASSIFICATION

UNCLASSIFIED
2b. GROUP

3 REPORT TITLE

Aids Users' Manual

4. DESCRIPTIVE NOTES (Type of report and incluaive dates)

9. »u TMOBiSi (First name, middle initial, last name)

C.A. Marcus

«. REPORT DATE 7«. TOTAL NO. OF PAGES

AUGUST 1971 81
76. NO. OF REFS

•«. CONTRACT OR GRANT NO.

F19(628)-71-C-0002
6. PROJEC T NO.

4060

9a. ORIGINATOR'S REPORT NUMBER(S)

MTR-2203

96. OTHER REPORT NO(S) (Any other number» that may be ammigned
this report)

**r 10. DISTRIBUTION STATEMENT

Approved for public release; dist:/jution unlimited

II- SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Electronic Systems Division, Air Force
Systems Command, L. G. Hanscom Field
Bedford, Massachusetts 01730

13. ABSTRACT

AIDS is a computer software package designed to provide data management capabilities
to a wide variety of users. It is written primarily in Common Business Oriented
Language (COBOL) and is designed and implemented on the Honeywell G-635. This
system, originally developed for NASA by General Electric Co., Apollo Systems
Division, was named Manned Space Flight-Data Processing System (MSF-DPS).
Modifications were made to improve the capabilities of MSF-DPS. These modifications,
designed to meet interim requirements of the Air Force Data Services Center (AF/ACS),
provide a responsive, versatile data management system for users of Honeywell (GE)
600 series computers.

This technical reports, designed for users of AIDS, details the features of this system
and provides examples of its use. Detailed system description (installation, maintenance,
internal linkages, etc.) are not contained in this report. This information is contained
in the AIDS Operations Manual (General Electric Co., "AIDS Version Description Docu-
ment, " July 1971). Organizations using AIDS may further modify or enhance this sys-
tem independently of ESD; therefore, no attempt will be made by ESD to update this
Technical Report if such changes are made.

DD ,T:„1473
Security Classification

Security Classification

LINK A LINKS
KEY WORDS

HOLE I WT MOLE I WT «OLE WT

SOFTWARE

DATA MANAGEMENT

COMPUTER

COBOL

QUERY LANGUAGE

CAI

TAPE FILES

G635

GE-TSS

Security Classification

